Ολοκλήρωμα του $$$\ln\left(\frac{x}{2} - 1\right)$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \ln\left(\frac{x}{2} - 1\right)\, dx$$$.
Λύση
Έστω $$$u=\frac{x}{2} - 1$$$.
Τότε $$$du=\left(\frac{x}{2} - 1\right)^{\prime }dx = \frac{dx}{2}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = 2 du$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$${\color{red}{\int{\ln{\left(\frac{x}{2} - 1 \right)} d x}}} = {\color{red}{\int{2 \ln{\left(u \right)} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=2$$$ και $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:
$${\color{red}{\int{2 \ln{\left(u \right)} d u}}} = {\color{red}{\left(2 \int{\ln{\left(u \right)} d u}\right)}}$$
Για το ολοκλήρωμα $$$\int{\ln{\left(u \right)} d u}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.
Έστω $$$\operatorname{g}=\ln{\left(u \right)}$$$ και $$$\operatorname{dv}=du$$$.
Τότε $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{1 d u}=u$$$ (τα βήματα φαίνονται »).
Επομένως,
$$2 {\color{red}{\int{\ln{\left(u \right)} d u}}}=2 {\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}=2 {\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:
$$2 u \ln{\left(u \right)} - 2 {\color{red}{\int{1 d u}}} = 2 u \ln{\left(u \right)} - 2 {\color{red}{u}}$$
Θυμηθείτε ότι $$$u=\frac{x}{2} - 1$$$:
$$- 2 {\color{red}{u}} + 2 {\color{red}{u}} \ln{\left({\color{red}{u}} \right)} = - 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} + 2 {\color{red}{\left(\frac{x}{2} - 1\right)}} \ln{\left({\color{red}{\left(\frac{x}{2} - 1\right)}} \right)}$$
Επομένως,
$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + 2 \left(\frac{x}{2} - 1\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$
Απλοποιήστε:
$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)} + 2$$
Προσθέστε τη σταθερά ολοκλήρωσης (και αφαιρέστε τον σταθερό όρο από την παράσταση):
$$\int{\ln{\left(\frac{x}{2} - 1 \right)} d x} = - x + \left(x - 2\right) \ln{\left(\frac{x}{2} - 1 \right)}+C$$
Απάντηση
$$$\int \ln\left(\frac{x}{2} - 1\right)\, dx = \left(- x + \left(x - 2\right) \ln\left(\frac{x}{2} - 1\right)\right) + C$$$A