Ολοκλήρωμα της $$$a^{x} \ln\left(a\right)$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int a^{x} \ln\left(a\right)\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\ln{\left(a \right)}$$$ και $$$f{\left(x \right)} = a^{x}$$$:
$${\color{red}{\int{a^{x} \ln{\left(a \right)} d x}}} = {\color{red}{\ln{\left(a \right)} \int{a^{x} d x}}}$$
Apply the exponential rule $$$\int{a^{x} d x} = \frac{a^{x}}{\ln{\left(a \right)}}$$$ with $$$a=a$$$:
$$\ln{\left(a \right)} {\color{red}{\int{a^{x} d x}}} = \ln{\left(a \right)} {\color{red}{\frac{a^{x}}{\ln{\left(a \right)}}}}$$
Επομένως,
$$\int{a^{x} \ln{\left(a \right)} d x} = a^{x}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{a^{x} \ln{\left(a \right)} d x} = a^{x}+C$$
Απάντηση
$$$\int a^{x} \ln\left(a\right)\, dx = a^{x} + C$$$A