Ολοκλήρωμα του $$$e^{\sqrt{2} \sqrt{x}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int e^{\sqrt{2} \sqrt{x}}\, dx$$$.
Λύση
Έστω $$$u=\sqrt{2} \sqrt{x}$$$.
Τότε $$$du=\left(\sqrt{2} \sqrt{x}\right)^{\prime }dx = \frac{\sqrt{2}}{2 \sqrt{x}} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\frac{dx}{\sqrt{x}} = \sqrt{2} du$$$.
Επομένως,
$${\color{red}{\int{e^{\sqrt{2} \sqrt{x}} d x}}} = {\color{red}{\int{u e^{u} d u}}}$$
Για το ολοκλήρωμα $$$\int{u e^{u} d u}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.
Έστω $$$\operatorname{g}=u$$$ και $$$\operatorname{dv}=e^{u} du$$$.
Τότε $$$\operatorname{dg}=\left(u\right)^{\prime }du=1 du$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{e^{u} d u}=e^{u}$$$ (τα βήματα φαίνονται »).
Επομένως,
$${\color{red}{\int{u e^{u} d u}}}={\color{red}{\left(u \cdot e^{u}-\int{e^{u} \cdot 1 d u}\right)}}={\color{red}{\left(u e^{u} - \int{e^{u} d u}\right)}}$$
Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:
$$u e^{u} - {\color{red}{\int{e^{u} d u}}} = u e^{u} - {\color{red}{e^{u}}}$$
Θυμηθείτε ότι $$$u=\sqrt{2} \sqrt{x}$$$:
$$- e^{{\color{red}{u}}} + {\color{red}{u}} e^{{\color{red}{u}}} = - e^{{\color{red}{\sqrt{2} \sqrt{x}}}} + {\color{red}{\sqrt{2} \sqrt{x}}} e^{{\color{red}{\sqrt{2} \sqrt{x}}}}$$
Επομένως,
$$\int{e^{\sqrt{2} \sqrt{x}} d x} = \sqrt{2} \sqrt{x} e^{\sqrt{2} \sqrt{x}} - e^{\sqrt{2} \sqrt{x}}$$
Απλοποιήστε:
$$\int{e^{\sqrt{2} \sqrt{x}} d x} = \left(\sqrt{2} \sqrt{x} - 1\right) e^{\sqrt{2} \sqrt{x}}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{e^{\sqrt{2} \sqrt{x}} d x} = \left(\sqrt{2} \sqrt{x} - 1\right) e^{\sqrt{2} \sqrt{x}}+C$$
Απάντηση
$$$\int e^{\sqrt{2} \sqrt{x}}\, dx = \left(\sqrt{2} \sqrt{x} - 1\right) e^{\sqrt{2} \sqrt{x}} + C$$$A