Ολοκλήρωμα του $$$\frac{\cos{\left(x \right)}}{45}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{\cos{\left(x \right)}}{45}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{45}$$$ και $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(x \right)}}{45} d x}}} = {\color{red}{\left(\frac{\int{\cos{\left(x \right)} d x}}{45}\right)}}$$
Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(x \right)} d x}}}}{45} = \frac{{\color{red}{\sin{\left(x \right)}}}}{45}$$
Επομένως,
$$\int{\frac{\cos{\left(x \right)}}{45} d x} = \frac{\sin{\left(x \right)}}{45}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{\cos{\left(x \right)}}{45} d x} = \frac{\sin{\left(x \right)}}{45}+C$$
Απάντηση
$$$\int \frac{\cos{\left(x \right)}}{45}\, dx = \frac{\sin{\left(x \right)}}{45} + C$$$A