Ολοκλήρωμα του $$$\frac{1}{4 \cos^{2}{\left(x \right)}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{1}{4 \cos^{2}{\left(x \right)}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{4 \cos^{2}{\left(x \right)}}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{4}$$$ και $$$f{\left(x \right)} = \frac{1}{\cos^{2}{\left(x \right)}}$$$:

$${\color{red}{\int{\frac{1}{4 \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\left(\frac{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}{4}\right)}}$$

Εκφράστε τον ολοκληρωτέο σε όρους της τέμνουσας:

$$\frac{{\color{red}{\int{\frac{1}{\cos^{2}{\left(x \right)}} d x}}}}{4} = \frac{{\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}}{4}$$

Το ολοκλήρωμα του $$$\sec^{2}{\left(x \right)}$$$ είναι $$$\int{\sec^{2}{\left(x \right)} d x} = \tan{\left(x \right)}$$$:

$$\frac{{\color{red}{\int{\sec^{2}{\left(x \right)} d x}}}}{4} = \frac{{\color{red}{\tan{\left(x \right)}}}}{4}$$

Επομένως,

$$\int{\frac{1}{4 \cos^{2}{\left(x \right)}} d x} = \frac{\tan{\left(x \right)}}{4}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{4 \cos^{2}{\left(x \right)}} d x} = \frac{\tan{\left(x \right)}}{4}+C$$

Απάντηση

$$$\int \frac{1}{4 \cos^{2}{\left(x \right)}}\, dx = \frac{\tan{\left(x \right)}}{4} + C$$$A


Please try a new game Rotatly