Ολοκλήρωμα του $$$\frac{1}{\sqrt{- 2 t^{26} + t^{2}}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{\sqrt{- 2 t^{26} + t^{2}}}\, dt$$$.
Λύση
Η είσοδος επαναγράφεται: $$$\int{\frac{1}{\sqrt{- 2 t^{26} + t^{2}}} d t}=\int{\frac{1}{t \sqrt{1 - 2 t^{24}}} d t}$$$.
Έστω $$$u=t^{12}$$$.
Τότε $$$du=\left(t^{12}\right)^{\prime }dt = 12 t^{11} dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$t^{11} dt = \frac{du}{12}$$$.
Επομένως,
$${\color{red}{\int{\frac{1}{t \sqrt{1 - 2 t^{24}}} d t}}} = {\color{red}{\int{\frac{1}{12 u \sqrt{1 - 2 u^{2}}} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{12}$$$ και $$$f{\left(u \right)} = \frac{1}{u \sqrt{1 - 2 u^{2}}}$$$:
$${\color{red}{\int{\frac{1}{12 u \sqrt{1 - 2 u^{2}}} d u}}} = {\color{red}{\left(\frac{\int{\frac{1}{u \sqrt{1 - 2 u^{2}}} d u}}{12}\right)}}$$
Έστω $$$u=\frac{\sqrt{2} \sin{\left(v \right)}}{2}$$$.
Τότε $$$du=\left(\frac{\sqrt{2} \sin{\left(v \right)}}{2}\right)^{\prime }dv = \frac{\sqrt{2} \cos{\left(v \right)}}{2} dv$$$ (τα βήματα μπορούν να προβληθούν »).
Επίσης, έπεται ότι $$$v=\operatorname{asin}{\left(\sqrt{2} u \right)}$$$.
Επομένως,
$$$\frac{1}{ u \sqrt{1 - 2 u ^{2}}} = \frac{\sqrt{2}}{\sqrt{1 - \sin^{2}{\left( v \right)}} \sin{\left( v \right)}}$$$
Χρησιμοποιήστε την ταυτότητα $$$1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}$$$:
$$$\frac{\sqrt{2}}{\sqrt{1 - \sin^{2}{\left( v \right)}} \sin{\left( v \right)}}=\frac{\sqrt{2}}{\sqrt{\cos^{2}{\left( v \right)}} \sin{\left( v \right)}}$$$
Υποθέτοντας ότι $$$\cos{\left( v \right)} \ge 0$$$, προκύπτουν τα ακόλουθα:
$$$\frac{\sqrt{2}}{\sqrt{\cos^{2}{\left( v \right)}} \sin{\left( v \right)}} = \frac{\sqrt{2}}{\sin{\left( v \right)} \cos{\left( v \right)}}$$$
Το ολοκλήρωμα μπορεί να γραφεί εκ νέου ως
$$\frac{{\color{red}{\int{\frac{1}{u \sqrt{1 - 2 u^{2}}} d u}}}}{12} = \frac{{\color{red}{\int{\frac{1}{\sin{\left(v \right)}} d v}}}}{12}$$
Εκφράστε το ημίτονο χρησιμοποιώντας τον τύπο διπλής γωνίας $$$\sin\left( v \right)=2\sin\left(\frac{ v }{2}\right)\cos\left(\frac{ v }{2}\right)$$$:
$$\frac{{\color{red}{\int{\frac{1}{\sin{\left(v \right)}} d v}}}}{12} = \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{v}{2} \right)} \cos{\left(\frac{v}{2} \right)}} d v}}}}{12}$$
Πολλαπλασιάστε τον αριθμητή και τον παρονομαστή με $$$\sec^2\left(\frac{ v }{2} \right)$$$:
$$\frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{v}{2} \right)} \cos{\left(\frac{v}{2} \right)}} d v}}}}{12} = \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{v}{2} \right)}}{2 \tan{\left(\frac{v}{2} \right)}} d v}}}}{12}$$
Έστω $$$w=\tan{\left(\frac{v}{2} \right)}$$$.
Τότε $$$dw=\left(\tan{\left(\frac{v}{2} \right)}\right)^{\prime }dv = \frac{\sec^{2}{\left(\frac{v}{2} \right)}}{2} dv$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\sec^{2}{\left(\frac{v}{2} \right)} dv = 2 dw$$$.
Επομένως,
$$\frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{v}{2} \right)}}{2 \tan{\left(\frac{v}{2} \right)}} d v}}}}{12} = \frac{{\color{red}{\int{\frac{1}{w} d w}}}}{12}$$
Το ολοκλήρωμα του $$$\frac{1}{w}$$$ είναι $$$\int{\frac{1}{w} d w} = \ln{\left(\left|{w}\right| \right)}$$$:
$$\frac{{\color{red}{\int{\frac{1}{w} d w}}}}{12} = \frac{{\color{red}{\ln{\left(\left|{w}\right| \right)}}}}{12}$$
Θυμηθείτε ότι $$$w=\tan{\left(\frac{v}{2} \right)}$$$:
$$\frac{\ln{\left(\left|{{\color{red}{w}}}\right| \right)}}{12} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{v}{2} \right)}}}}\right| \right)}}{12}$$
Θυμηθείτε ότι $$$v=\operatorname{asin}{\left(\sqrt{2} u \right)}$$$:
$$\frac{\ln{\left(\left|{\tan{\left(\frac{{\color{red}{v}}}{2} \right)}}\right| \right)}}{12} = \frac{\ln{\left(\left|{\tan{\left(\frac{{\color{red}{\operatorname{asin}{\left(\sqrt{2} u \right)}}}}{2} \right)}}\right| \right)}}{12}$$
Θυμηθείτε ότι $$$u=t^{12}$$$:
$$\frac{\ln{\left(\left|{\tan{\left(\frac{\operatorname{asin}{\left(\sqrt{2} {\color{red}{u}} \right)}}{2} \right)}}\right| \right)}}{12} = \frac{\ln{\left(\left|{\tan{\left(\frac{\operatorname{asin}{\left(\sqrt{2} {\color{red}{t^{12}}} \right)}}{2} \right)}}\right| \right)}}{12}$$
Επομένως,
$$\int{\frac{1}{t \sqrt{1 - 2 t^{24}}} d t} = \frac{\ln{\left(\left|{\tan{\left(\frac{\operatorname{asin}{\left(\sqrt{2} t^{12} \right)}}{2} \right)}}\right| \right)}}{12}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{t \sqrt{1 - 2 t^{24}}} d t} = \frac{\ln{\left(\left|{\tan{\left(\frac{\operatorname{asin}{\left(\sqrt{2} t^{12} \right)}}{2} \right)}}\right| \right)}}{12}+C$$
Απάντηση
$$$\int \frac{1}{\sqrt{- 2 t^{26} + t^{2}}}\, dt = \frac{\ln\left(\left|{\tan{\left(\frac{\operatorname{asin}{\left(\sqrt{2} t^{12} \right)}}{2} \right)}}\right|\right)}{12} + C$$$A