Ολοκλήρωμα του $$$\cos{\left(3 t \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \cos{\left(3 t \right)}\, dt$$$.
Λύση
Έστω $$$u=3 t$$$.
Τότε $$$du=\left(3 t\right)^{\prime }dt = 3 dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = \frac{du}{3}$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$${\color{red}{\int{\cos{\left(3 t \right)} d t}}} = {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{3}$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$${\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}} = {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}$$
Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{3} = \frac{{\color{red}{\sin{\left(u \right)}}}}{3}$$
Θυμηθείτε ότι $$$u=3 t$$$:
$$\frac{\sin{\left({\color{red}{u}} \right)}}{3} = \frac{\sin{\left({\color{red}{\left(3 t\right)}} \right)}}{3}$$
Επομένως,
$$\int{\cos{\left(3 t \right)} d t} = \frac{\sin{\left(3 t \right)}}{3}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\cos{\left(3 t \right)} d t} = \frac{\sin{\left(3 t \right)}}{3}+C$$
Απάντηση
$$$\int \cos{\left(3 t \right)}\, dt = \frac{\sin{\left(3 t \right)}}{3} + C$$$A