Ολοκλήρωμα του $$$\cos{\left(\frac{2}{x} \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\cos{\left(\frac{2}{x} \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \cos{\left(\frac{2}{x} \right)}\, dx$$$.

Λύση

Για το ολοκλήρωμα $$$\int{\cos{\left(\frac{2}{x} \right)} d x}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Έστω $$$\operatorname{u}=\cos{\left(\frac{2}{x} \right)}$$$ και $$$\operatorname{dv}=dx$$$.

Τότε $$$\operatorname{du}=\left(\cos{\left(\frac{2}{x} \right)}\right)^{\prime }dx=\frac{2 \sin{\left(\frac{2}{x} \right)}}{x^{2}} dx$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{1 d x}=x$$$ (τα βήματα φαίνονται »).

Επομένως,

$${\color{red}{\int{\cos{\left(\frac{2}{x} \right)} d x}}}={\color{red}{\left(\cos{\left(\frac{2}{x} \right)} \cdot x-\int{x \cdot \frac{2 \sin{\left(\frac{2}{x} \right)}}{x^{2}} d x}\right)}}={\color{red}{\left(x \cos{\left(\frac{2}{x} \right)} - \int{\frac{2 \sin{\left(\frac{2}{x} \right)}}{x} d x}\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=2$$$ και $$$f{\left(x \right)} = \frac{\sin{\left(\frac{2}{x} \right)}}{x}$$$:

$$x \cos{\left(\frac{2}{x} \right)} - {\color{red}{\int{\frac{2 \sin{\left(\frac{2}{x} \right)}}{x} d x}}} = x \cos{\left(\frac{2}{x} \right)} - {\color{red}{\left(2 \int{\frac{\sin{\left(\frac{2}{x} \right)}}{x} d x}\right)}}$$

Έστω $$$u=\frac{2}{x}$$$.

Τότε $$$du=\left(\frac{2}{x}\right)^{\prime }dx = - \frac{2}{x^{2}} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\frac{dx}{x^{2}} = - \frac{du}{2}$$$.

Το ολοκλήρωμα γίνεται

$$x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\frac{\sin{\left(\frac{2}{x} \right)}}{x} d x}}} = x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{u}\right)d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = \frac{\sin{\left(u \right)}}{u}$$$:

$$x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\int{\left(- \frac{\sin{\left(u \right)}}{u}\right)d u}}} = x \cos{\left(\frac{2}{x} \right)} - 2 {\color{red}{\left(- \int{\frac{\sin{\left(u \right)}}{u} d u}\right)}}$$

Αυτό το ολοκλήρωμα (Ημιτονοειδές ολοκλήρωμα) δεν έχει κλειστή μορφή:

$$x \cos{\left(\frac{2}{x} \right)} + 2 {\color{red}{\int{\frac{\sin{\left(u \right)}}{u} d u}}} = x \cos{\left(\frac{2}{x} \right)} + 2 {\color{red}{\operatorname{Si}{\left(u \right)}}}$$

Θυμηθείτε ότι $$$u=\frac{2}{x}$$$:

$$x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left({\color{red}{u}} \right)} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left({\color{red}{\left(\frac{2}{x}\right)}} \right)}$$

Επομένως,

$$\int{\cos{\left(\frac{2}{x} \right)} d x} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\cos{\left(\frac{2}{x} \right)} d x} = x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}+C$$

Απάντηση

$$$\int \cos{\left(\frac{2}{x} \right)}\, dx = \left(x \cos{\left(\frac{2}{x} \right)} + 2 \operatorname{Si}{\left(\frac{2}{x} \right)}\right) + C$$$A


Please try a new game Rotatly