Ολοκλήρωμα του $$$7 t^{4}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int 7 t^{4}\, dt$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=7$$$ και $$$f{\left(t \right)} = t^{4}$$$:
$${\color{red}{\int{7 t^{4} d t}}} = {\color{red}{\left(7 \int{t^{4} d t}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=4$$$:
$$7 {\color{red}{\int{t^{4} d t}}}=7 {\color{red}{\frac{t^{1 + 4}}{1 + 4}}}=7 {\color{red}{\left(\frac{t^{5}}{5}\right)}}$$
Επομένως,
$$\int{7 t^{4} d t} = \frac{7 t^{5}}{5}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{7 t^{4} d t} = \frac{7 t^{5}}{5}+C$$
Απάντηση
$$$\int 7 t^{4}\, dt = \frac{7 t^{5}}{5} + C$$$A