Ολοκλήρωμα του $$$7 \tan^{3}{\left(x \right)} \sec{\left(x \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int 7 \tan^{3}{\left(x \right)} \sec{\left(x \right)}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=7$$$ και $$$f{\left(x \right)} = \tan^{3}{\left(x \right)} \sec{\left(x \right)}$$$:
$${\color{red}{\int{7 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x}}} = {\color{red}{\left(7 \int{\tan^{3}{\left(x \right)} \sec{\left(x \right)} d x}\right)}}$$
Εξαγάγετε ως παράγοντα μία εφαπτομένη και γράψτε τα υπόλοιπα σε όρους της τέμνουσας, χρησιμοποιώντας τον τύπο $$$\tan^2\left(x \right)=\sec^2\left(x \right)-1$$$:
$$7 {\color{red}{\int{\tan^{3}{\left(x \right)} \sec{\left(x \right)} d x}}} = 7 {\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec{\left(x \right)} d x}}}$$
Έστω $$$u=\sec{\left(x \right)}$$$.
Τότε $$$du=\left(\sec{\left(x \right)}\right)^{\prime }dx = \tan{\left(x \right)} \sec{\left(x \right)} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\tan{\left(x \right)} \sec{\left(x \right)} dx = du$$$.
Επομένως,
$$7 {\color{red}{\int{\left(\sec^{2}{\left(x \right)} - 1\right) \tan{\left(x \right)} \sec{\left(x \right)} d x}}} = 7 {\color{red}{\int{\left(u^{2} - 1\right)d u}}}$$
Ολοκληρώστε όρο προς όρο:
$$7 {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = 7 {\color{red}{\left(- \int{1 d u} + \int{u^{2} d u}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:
$$7 \int{u^{2} d u} - 7 {\color{red}{\int{1 d u}}} = 7 \int{u^{2} d u} - 7 {\color{red}{u}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:
$$- 7 u + 7 {\color{red}{\int{u^{2} d u}}}=- 7 u + 7 {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- 7 u + 7 {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Θυμηθείτε ότι $$$u=\sec{\left(x \right)}$$$:
$$- 7 {\color{red}{u}} + \frac{7 {\color{red}{u}}^{3}}{3} = - 7 {\color{red}{\sec{\left(x \right)}}} + \frac{7 {\color{red}{\sec{\left(x \right)}}}^{3}}{3}$$
Επομένως,
$$\int{7 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x} = \frac{7 \sec^{3}{\left(x \right)}}{3} - 7 \sec{\left(x \right)}$$
Απλοποιήστε:
$$\int{7 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x} = \frac{7 \left(\sec^{2}{\left(x \right)} - 3\right) \sec{\left(x \right)}}{3}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{7 \tan^{3}{\left(x \right)} \sec{\left(x \right)} d x} = \frac{7 \left(\sec^{2}{\left(x \right)} - 3\right) \sec{\left(x \right)}}{3}+C$$
Απάντηση
$$$\int 7 \tan^{3}{\left(x \right)} \sec{\left(x \right)}\, dx = \frac{7 \left(\sec^{2}{\left(x \right)} - 3\right) \sec{\left(x \right)}}{3} + C$$$A