Ολοκλήρωμα του $$$\frac{4 x}{x - 6}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{4 x}{x - 6}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=4$$$ και $$$f{\left(x \right)} = \frac{x}{x - 6}$$$:
$${\color{red}{\int{\frac{4 x}{x - 6} d x}}} = {\color{red}{\left(4 \int{\frac{x}{x - 6} d x}\right)}}$$
Επαναγράψτε και διασπάστε το κλάσμα:
$$4 {\color{red}{\int{\frac{x}{x - 6} d x}}} = 4 {\color{red}{\int{\left(1 + \frac{6}{x - 6}\right)d x}}}$$
Ολοκληρώστε όρο προς όρο:
$$4 {\color{red}{\int{\left(1 + \frac{6}{x - 6}\right)d x}}} = 4 {\color{red}{\left(\int{1 d x} + \int{\frac{6}{x - 6} d x}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=1$$$:
$$4 \int{\frac{6}{x - 6} d x} + 4 {\color{red}{\int{1 d x}}} = 4 \int{\frac{6}{x - 6} d x} + 4 {\color{red}{x}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=6$$$ και $$$f{\left(x \right)} = \frac{1}{x - 6}$$$:
$$4 x + 4 {\color{red}{\int{\frac{6}{x - 6} d x}}} = 4 x + 4 {\color{red}{\left(6 \int{\frac{1}{x - 6} d x}\right)}}$$
Έστω $$$u=x - 6$$$.
Τότε $$$du=\left(x - 6\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$4 x + 24 {\color{red}{\int{\frac{1}{x - 6} d x}}} = 4 x + 24 {\color{red}{\int{\frac{1}{u} d u}}}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$4 x + 24 {\color{red}{\int{\frac{1}{u} d u}}} = 4 x + 24 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Θυμηθείτε ότι $$$u=x - 6$$$:
$$4 x + 24 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 4 x + 24 \ln{\left(\left|{{\color{red}{\left(x - 6\right)}}}\right| \right)}$$
Επομένως,
$$\int{\frac{4 x}{x - 6} d x} = 4 x + 24 \ln{\left(\left|{x - 6}\right| \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{4 x}{x - 6} d x} = 4 x + 24 \ln{\left(\left|{x - 6}\right| \right)}+C$$
Απάντηση
$$$\int \frac{4 x}{x - 6}\, dx = \left(4 x + 24 \ln\left(\left|{x - 6}\right|\right)\right) + C$$$A