Ολοκλήρωμα του $$$\frac{1}{126 t}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{1}{126 t}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{126 t}\, dt$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=\frac{1}{126}$$$ και $$$f{\left(t \right)} = \frac{1}{t}$$$:

$${\color{red}{\int{\frac{1}{126 t} d t}}} = {\color{red}{\left(\frac{\int{\frac{1}{t} d t}}{126}\right)}}$$

Το ολοκλήρωμα του $$$\frac{1}{t}$$$ είναι $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:

$$\frac{{\color{red}{\int{\frac{1}{t} d t}}}}{126} = \frac{{\color{red}{\ln{\left(\left|{t}\right| \right)}}}}{126}$$

Επομένως,

$$\int{\frac{1}{126 t} d t} = \frac{\ln{\left(\left|{t}\right| \right)}}{126}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{126 t} d t} = \frac{\ln{\left(\left|{t}\right| \right)}}{126}+C$$

Απάντηση

$$$\int \frac{1}{126 t}\, dt = \frac{\ln\left(\left|{t}\right|\right)}{126} + C$$$A


Please try a new game Rotatly