Ολοκλήρωμα του $$$3^{x^{2}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$3^{x^{2}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int 3^{x^{2}}\, dx$$$.

Λύση

Αλλαγή βάσης:

$${\color{red}{\int{3^{x^{2}} d x}}} = {\color{red}{\int{e^{x^{2} \ln{\left(3 \right)}} d x}}}$$

Έστω $$$u=x \sqrt{\ln{\left(3 \right)}}$$$.

Τότε $$$du=\left(x \sqrt{\ln{\left(3 \right)}}\right)^{\prime }dx = \sqrt{\ln{\left(3 \right)}} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{\sqrt{\ln{\left(3 \right)}}}$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$${\color{red}{\int{e^{x^{2} \ln{\left(3 \right)}} d x}}} = {\color{red}{\int{\frac{e^{u^{2}}}{\sqrt{\ln{\left(3 \right)}}} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{\sqrt{\ln{\left(3 \right)}}}$$$ και $$$f{\left(u \right)} = e^{u^{2}}$$$:

$${\color{red}{\int{\frac{e^{u^{2}}}{\sqrt{\ln{\left(3 \right)}}} d u}}} = {\color{red}{\frac{\int{e^{u^{2}} d u}}{\sqrt{\ln{\left(3 \right)}}}}}$$

Αυτό το ολοκλήρωμα (Φανταστική συνάρτηση σφάλματος) δεν έχει κλειστή μορφή:

$$\frac{{\color{red}{\int{e^{u^{2}} d u}}}}{\sqrt{\ln{\left(3 \right)}}} = \frac{{\color{red}{\left(\frac{\sqrt{\pi} \operatorname{erfi}{\left(u \right)}}{2}\right)}}}{\sqrt{\ln{\left(3 \right)}}}$$

Θυμηθείτε ότι $$$u=x \sqrt{\ln{\left(3 \right)}}$$$:

$$\frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{u}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}} = \frac{\sqrt{\pi} \operatorname{erfi}{\left({\color{red}{x \sqrt{\ln{\left(3 \right)}}}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}}$$

Επομένως,

$$\int{3^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \sqrt{\ln{\left(3 \right)}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{3^{x^{2}} d x} = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \sqrt{\ln{\left(3 \right)}} \right)}}{2 \sqrt{\ln{\left(3 \right)}}}+C$$

Απάντηση

$$$\int 3^{x^{2}}\, dx = \frac{\sqrt{\pi} \operatorname{erfi}{\left(x \sqrt{\ln\left(3\right)} \right)}}{2 \sqrt{\ln\left(3\right)}} + C$$$A


Please try a new game Rotatly