Ολοκλήρωμα του $$$\frac{3}{x - 4}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{3}{x - 4}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=3$$$ και $$$f{\left(x \right)} = \frac{1}{x - 4}$$$:
$${\color{red}{\int{\frac{3}{x - 4} d x}}} = {\color{red}{\left(3 \int{\frac{1}{x - 4} d x}\right)}}$$
Έστω $$$u=x - 4$$$.
Τότε $$$du=\left(x - 4\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.
Επομένως,
$$3 {\color{red}{\int{\frac{1}{x - 4} d x}}} = 3 {\color{red}{\int{\frac{1}{u} d u}}}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$3 {\color{red}{\int{\frac{1}{u} d u}}} = 3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$
Θυμηθείτε ότι $$$u=x - 4$$$:
$$3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 3 \ln{\left(\left|{{\color{red}{\left(x - 4\right)}}}\right| \right)}$$
Επομένως,
$$\int{\frac{3}{x - 4} d x} = 3 \ln{\left(\left|{x - 4}\right| \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{3}{x - 4} d x} = 3 \ln{\left(\left|{x - 4}\right| \right)}+C$$
Απάντηση
$$$\int \frac{3}{x - 4}\, dx = 3 \ln\left(\left|{x - 4}\right|\right) + C$$$A