Ολοκλήρωμα του $$$2 \cos{\left(\pi t \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int 2 \cos{\left(\pi t \right)}\, dt$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=2$$$ και $$$f{\left(t \right)} = \cos{\left(\pi t \right)}$$$:
$${\color{red}{\int{2 \cos{\left(\pi t \right)} d t}}} = {\color{red}{\left(2 \int{\cos{\left(\pi t \right)} d t}\right)}}$$
Έστω $$$u=\pi t$$$.
Τότε $$$du=\left(\pi t\right)^{\prime }dt = \pi dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = \frac{du}{\pi}$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$2 {\color{red}{\int{\cos{\left(\pi t \right)} d t}}} = 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{\pi} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{\pi}$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{\pi} d u}}} = 2 {\color{red}{\frac{\int{\cos{\left(u \right)} d u}}{\pi}}}$$
Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$\frac{2 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{\pi} = \frac{2 {\color{red}{\sin{\left(u \right)}}}}{\pi}$$
Θυμηθείτε ότι $$$u=\pi t$$$:
$$\frac{2 \sin{\left({\color{red}{u}} \right)}}{\pi} = \frac{2 \sin{\left({\color{red}{\pi t}} \right)}}{\pi}$$
Επομένως,
$$\int{2 \cos{\left(\pi t \right)} d t} = \frac{2 \sin{\left(\pi t \right)}}{\pi}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{2 \cos{\left(\pi t \right)} d t} = \frac{2 \sin{\left(\pi t \right)}}{\pi}+C$$
Απάντηση
$$$\int 2 \cos{\left(\pi t \right)}\, dt = \frac{2 \sin{\left(\pi t \right)}}{\pi} + C$$$A