Ολοκλήρωμα της $$$\frac{a^{3} \ln\left(x\right)}{x}$$$ ως προς $$$e$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$\frac{a^{3} \ln\left(x\right)}{x}$$$ ως προς $$$e$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{a^{3} \ln\left(x\right)}{x}\, de$$$.

Λύση

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, de = c e$$$ με $$$c=\frac{a^{3} \ln{\left(x \right)}}{x}$$$:

$${\color{red}{\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e}}} = {\color{red}{\frac{a^{3} e \ln{\left(x \right)}}{x}}}$$

Επομένως,

$$\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e} = \frac{a^{3} e \ln{\left(x \right)}}{x}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{a^{3} \ln{\left(x \right)}}{x} d e} = \frac{a^{3} e \ln{\left(x \right)}}{x}+C$$

Απάντηση

$$$\int \frac{a^{3} \ln\left(x\right)}{x}\, de = \frac{a^{3} e \ln\left(x\right)}{x} + C$$$A


Please try a new game Rotatly