Ολοκλήρωμα του $$$\frac{1}{2} - x$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{1}{2} - x$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(\frac{1}{2} - x\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(\frac{1}{2} - x\right)d x}}} = {\color{red}{\left(\int{\frac{1}{2} d x} - \int{x d x}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=\frac{1}{2}$$$:

$$- \int{x d x} + {\color{red}{\int{\frac{1}{2} d x}}} = - \int{x d x} + {\color{red}{\left(\frac{x}{2}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$\frac{x}{2} - {\color{red}{\int{x d x}}}=\frac{x}{2} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x}{2} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Επομένως,

$$\int{\left(\frac{1}{2} - x\right)d x} = - \frac{x^{2}}{2} + \frac{x}{2}$$

Απλοποιήστε:

$$\int{\left(\frac{1}{2} - x\right)d x} = \frac{x \left(1 - x\right)}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(\frac{1}{2} - x\right)d x} = \frac{x \left(1 - x\right)}{2}+C$$

Απάντηση

$$$\int \left(\frac{1}{2} - x\right)\, dx = \frac{x \left(1 - x\right)}{2} + C$$$A


Please try a new game Rotatly