Ολοκλήρωμα του $$$\frac{1}{\left(x - 2\right)^{2}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{\left(x - 2\right)^{2}}\, dx$$$.
Λύση
Έστω $$$u=x - 2$$$.
Τότε $$$du=\left(x - 2\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$${\color{red}{\int{\frac{1}{\left(x - 2\right)^{2}} d x}}} = {\color{red}{\int{\frac{1}{u^{2}} d u}}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=-2$$$:
$${\color{red}{\int{\frac{1}{u^{2}} d u}}}={\color{red}{\int{u^{-2} d u}}}={\color{red}{\frac{u^{-2 + 1}}{-2 + 1}}}={\color{red}{\left(- u^{-1}\right)}}={\color{red}{\left(- \frac{1}{u}\right)}}$$
Θυμηθείτε ότι $$$u=x - 2$$$:
$$- {\color{red}{u}}^{-1} = - {\color{red}{\left(x - 2\right)}}^{-1}$$
Επομένως,
$$\int{\frac{1}{\left(x - 2\right)^{2}} d x} = - \frac{1}{x - 2}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{\left(x - 2\right)^{2}} d x} = - \frac{1}{x - 2}+C$$
Απάντηση
$$$\int \frac{1}{\left(x - 2\right)^{2}}\, dx = - \frac{1}{x - 2} + C$$$A