Ολοκλήρωμα του $$$\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx$$$.
Λύση
Έστω $$$u=\frac{x}{3}$$$.
Τότε $$$du=\left(\frac{x}{3}\right)^{\prime }dx = \frac{dx}{3}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = 3 du$$$.
Το ολοκλήρωμα γίνεται
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x}}} = {\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=3$$$ και $$$f{\left(u \right)} = \frac{1}{\sin^{2}{\left(u \right)}}$$$:
$${\color{red}{\int{\frac{3}{\sin^{2}{\left(u \right)}} d u}}} = {\color{red}{\left(3 \int{\frac{1}{\sin^{2}{\left(u \right)}} d u}\right)}}$$
Ξαναγράψτε την ολοκληρωτέα συνάρτηση σε όρους της συντέμνουσας:
$$3 {\color{red}{\int{\frac{1}{\sin^{2}{\left(u \right)}} d u}}} = 3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}}$$
Το ολοκλήρωμα του $$$\csc^{2}{\left(u \right)}$$$ είναι $$$\int{\csc^{2}{\left(u \right)} d u} = - \cot{\left(u \right)}$$$:
$$3 {\color{red}{\int{\csc^{2}{\left(u \right)} d u}}} = 3 {\color{red}{\left(- \cot{\left(u \right)}\right)}}$$
Θυμηθείτε ότι $$$u=\frac{x}{3}$$$:
$$- 3 \cot{\left({\color{red}{u}} \right)} = - 3 \cot{\left({\color{red}{\left(\frac{x}{3}\right)}} \right)}$$
Επομένως,
$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}} d x} = - 3 \cot{\left(\frac{x}{3} \right)}+C$$
Απάντηση
$$$\int \frac{1}{\sin^{2}{\left(\frac{x}{3} \right)}}\, dx = - 3 \cot{\left(\frac{x}{3} \right)} + C$$$A