Ολοκλήρωμα του $$$\frac{1}{\left(g - 27\right)^{\frac{2}{3}}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{\left(g - 27\right)^{\frac{2}{3}}}\, dg$$$.
Λύση
Έστω $$$u=g - 27$$$.
Τότε $$$du=\left(g - 27\right)^{\prime }dg = 1 dg$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dg = du$$$.
Το ολοκλήρωμα γίνεται
$${\color{red}{\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g}}} = {\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=- \frac{2}{3}$$$:
$${\color{red}{\int{\frac{1}{u^{\frac{2}{3}}} d u}}}={\color{red}{\int{u^{- \frac{2}{3}} d u}}}={\color{red}{\frac{u^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1}}}={\color{red}{\left(3 u^{\frac{1}{3}}\right)}}={\color{red}{\left(3 \sqrt[3]{u}\right)}}$$
Θυμηθείτε ότι $$$u=g - 27$$$:
$$3 \sqrt[3]{{\color{red}{u}}} = 3 \sqrt[3]{{\color{red}{\left(g - 27\right)}}}$$
Επομένως,
$$\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g} = 3 \sqrt[3]{g - 27}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{\left(g - 27\right)^{\frac{2}{3}}} d g} = 3 \sqrt[3]{g - 27}+C$$
Απάντηση
$$$\int \frac{1}{\left(g - 27\right)^{\frac{2}{3}}}\, dg = 3 \sqrt[3]{g - 27} + C$$$A