Ολοκλήρωμα του $$$\frac{\sqrt{11} e^{- \frac{x}{2}}}{22}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{\sqrt{11}}{22}$$$ και $$$f{\left(x \right)} = e^{- \frac{x}{2}}$$$:
$${\color{red}{\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x}}} = {\color{red}{\left(\frac{\sqrt{11} \int{e^{- \frac{x}{2}} d x}}{22}\right)}}$$
Έστω $$$u=- \frac{x}{2}$$$.
Τότε $$$du=\left(- \frac{x}{2}\right)^{\prime }dx = - \frac{dx}{2}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = - 2 du$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$\frac{\sqrt{11} {\color{red}{\int{e^{- \frac{x}{2}} d x}}}}{22} = \frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-2$$$ και $$$f{\left(u \right)} = e^{u}$$$:
$$\frac{\sqrt{11} {\color{red}{\int{\left(- 2 e^{u}\right)d u}}}}{22} = \frac{\sqrt{11} {\color{red}{\left(- 2 \int{e^{u} d u}\right)}}}{22}$$
Το ολοκλήρωμα της εκθετικής συνάρτησης είναι $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{\sqrt{11} {\color{red}{\int{e^{u} d u}}}}{11} = - \frac{\sqrt{11} {\color{red}{e^{u}}}}{11}$$
Θυμηθείτε ότι $$$u=- \frac{x}{2}$$$:
$$- \frac{\sqrt{11} e^{{\color{red}{u}}}}{11} = - \frac{\sqrt{11} e^{{\color{red}{\left(- \frac{x}{2}\right)}}}}{11}$$
Επομένως,
$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{\sqrt{11} e^{- \frac{x}{2}}}{22} d x} = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11}+C$$
Απάντηση
$$$\int \frac{\sqrt{11} e^{- \frac{x}{2}}}{22}\, dx = - \frac{\sqrt{11} e^{- \frac{x}{2}}}{11} + C$$$A