Ολοκλήρωμα του $$$\frac{1}{2 - \cos{\left(2 x \right)}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{1}{2 - \cos{\left(2 x \right)}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{1}{2 - \cos{\left(2 x \right)}}\, dx$$$.

Λύση

Έστω $$$u=2 x$$$.

Τότε $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{2}$$$.

Το ολοκλήρωμα γίνεται

$${\color{red}{\int{\frac{1}{2 - \cos{\left(2 x \right)}} d x}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 2\right)}\right)d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=- \frac{1}{2}$$$ και $$$f{\left(u \right)} = \frac{1}{\cos{\left(u \right)} - 2}$$$:

$${\color{red}{\int{\left(- \frac{1}{2 \left(\cos{\left(u \right)} - 2\right)}\right)d u}}} = {\color{red}{\left(- \frac{\int{\frac{1}{\cos{\left(u \right)} - 2} d u}}{2}\right)}}$$

Επαναγράψτε τον ολοκληρωτέο χρησιμοποιώντας τον τύπο $$$\cos{\left( u \right)}=\frac{1 - \tan^{2}{\left(\frac{ u }{2} \right)}}{\tan^{2}{\left(\frac{ u }{2} \right)} + 1}$$$:

$$- \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)} - 2} d u}}}}{2} = - \frac{{\color{red}{\int{\frac{1}{\frac{1 - \tan^{2}{\left(\frac{u}{2} \right)}}{\tan^{2}{\left(\frac{u}{2} \right)} + 1} - 2} d u}}}}{2}$$

Έστω $$$v=\tan{\left(\frac{u}{2} \right)}$$$.

Τότε $$$u=2 \operatorname{atan}{\left(v \right)}$$$ και $$$du=\left(2 \operatorname{atan}{\left(v \right)}\right)^{\prime }dv = \frac{2}{v^{2} + 1} dv$$$ (τα βήματα μπορούν να φανούν »).

Επομένως,

$$- \frac{{\color{red}{\int{\frac{1}{\frac{1 - \tan^{2}{\left(\frac{u}{2} \right)}}{\tan^{2}{\left(\frac{u}{2} \right)} + 1} - 2} d u}}}}{2} = - \frac{{\color{red}{\int{\frac{2}{\left(v^{2} + 1\right) \left(\frac{1 - v^{2}}{v^{2} + 1} - 2\right)} d v}}}}{2}$$

Απλοποιήστε:

$$- \frac{{\color{red}{\int{\frac{2}{\left(v^{2} + 1\right) \left(\frac{1 - v^{2}}{v^{2} + 1} - 2\right)} d v}}}}{2} = - \frac{{\color{red}{\int{\left(- \frac{2}{3 v^{2} + 1}\right)d v}}}}{2}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ με $$$c=-2$$$ και $$$f{\left(v \right)} = \frac{1}{3 v^{2} + 1}$$$:

$$- \frac{{\color{red}{\int{\left(- \frac{2}{3 v^{2} + 1}\right)d v}}}}{2} = - \frac{{\color{red}{\left(- 2 \int{\frac{1}{3 v^{2} + 1} d v}\right)}}}{2}$$

Έστω $$$w=\sqrt{3} v$$$.

Τότε $$$dw=\left(\sqrt{3} v\right)^{\prime }dv = \sqrt{3} dv$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dv = \frac{\sqrt{3} dw}{3}$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$${\color{red}{\int{\frac{1}{3 v^{2} + 1} d v}}} = {\color{red}{\int{\frac{\sqrt{3}}{3 \left(w^{2} + 1\right)} d w}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ με $$$c=\frac{\sqrt{3}}{3}$$$ και $$$f{\left(w \right)} = \frac{1}{w^{2} + 1}$$$:

$${\color{red}{\int{\frac{\sqrt{3}}{3 \left(w^{2} + 1\right)} d w}}} = {\color{red}{\left(\frac{\sqrt{3} \int{\frac{1}{w^{2} + 1} d w}}{3}\right)}}$$

Το ολοκλήρωμα του $$$\frac{1}{w^{2} + 1}$$$ είναι $$$\int{\frac{1}{w^{2} + 1} d w} = \operatorname{atan}{\left(w \right)}$$$:

$$\frac{\sqrt{3} {\color{red}{\int{\frac{1}{w^{2} + 1} d w}}}}{3} = \frac{\sqrt{3} {\color{red}{\operatorname{atan}{\left(w \right)}}}}{3}$$

Θυμηθείτε ότι $$$w=\sqrt{3} v$$$:

$$\frac{\sqrt{3} \operatorname{atan}{\left({\color{red}{w}} \right)}}{3} = \frac{\sqrt{3} \operatorname{atan}{\left({\color{red}{\sqrt{3} v}} \right)}}{3}$$

Θυμηθείτε ότι $$$v=\tan{\left(\frac{u}{2} \right)}$$$:

$$\frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} {\color{red}{v}} \right)}}{3} = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} {\color{red}{\tan{\left(\frac{u}{2} \right)}}} \right)}}{3}$$

Θυμηθείτε ότι $$$u=2 x$$$:

$$\frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(\frac{{\color{red}{u}}}{2} \right)} \right)}}{3} = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(\frac{{\color{red}{\left(2 x\right)}}}{2} \right)} \right)}}{3}$$

Επομένως,

$$\int{\frac{1}{2 - \cos{\left(2 x \right)}} d x} = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(x \right)} \right)}}{3}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{1}{2 - \cos{\left(2 x \right)}} d x} = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(x \right)} \right)}}{3}+C$$

Απάντηση

$$$\int \frac{1}{2 - \cos{\left(2 x \right)}}\, dx = \frac{\sqrt{3} \operatorname{atan}{\left(\sqrt{3} \tan{\left(x \right)} \right)}}{3} + C$$$A


Please try a new game Rotatly