Ολοκλήρωμα του $$$\frac{1}{1 - t^{2}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{1}{1 - t^{2}}\, dt$$$.
Λύση
Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):
$${\color{red}{\int{\frac{1}{1 - t^{2}} d t}}} = {\color{red}{\int{\left(\frac{1}{2 \left(t + 1\right)} - \frac{1}{2 \left(t - 1\right)}\right)d t}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(\frac{1}{2 \left(t + 1\right)} - \frac{1}{2 \left(t - 1\right)}\right)d t}}} = {\color{red}{\left(- \int{\frac{1}{2 \left(t - 1\right)} d t} + \int{\frac{1}{2 \left(t + 1\right)} d t}\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(t \right)} = \frac{1}{t + 1}$$$:
$$- \int{\frac{1}{2 \left(t - 1\right)} d t} + {\color{red}{\int{\frac{1}{2 \left(t + 1\right)} d t}}} = - \int{\frac{1}{2 \left(t - 1\right)} d t} + {\color{red}{\left(\frac{\int{\frac{1}{t + 1} d t}}{2}\right)}}$$
Έστω $$$u=t + 1$$$.
Τότε $$$du=\left(t + 1\right)^{\prime }dt = 1 dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = du$$$.
Επομένως,
$$- \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\int{\frac{1}{t + 1} d t}}}}{2} = - \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Θυμηθείτε ότι $$$u=t + 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(t - 1\right)} d t} = \frac{\ln{\left(\left|{{\color{red}{\left(t + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(t - 1\right)} d t}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(t \right)} = \frac{1}{t - 1}$$$:
$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(t - 1\right)} d t}}} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{t - 1} d t}}{2}\right)}}$$
Έστω $$$u=t - 1$$$.
Τότε $$$du=\left(t - 1\right)^{\prime }dt = 1 dt$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dt = du$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{t - 1} d t}}}}{2} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Θυμηθείτε ότι $$$u=t - 1$$$:
$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(t - 1\right)}}}\right| \right)}}{2}$$
Επομένως,
$$\int{\frac{1}{1 - t^{2}} d t} = - \frac{\ln{\left(\left|{t - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2}$$
Απλοποιήστε:
$$\int{\frac{1}{1 - t^{2}} d t} = \frac{- \ln{\left(\left|{t - 1}\right| \right)} + \ln{\left(\left|{t + 1}\right| \right)}}{2}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1}{1 - t^{2}} d t} = \frac{- \ln{\left(\left|{t - 1}\right| \right)} + \ln{\left(\left|{t + 1}\right| \right)}}{2}+C$$
Απάντηση
$$$\int \frac{1}{1 - t^{2}}\, dt = \frac{- \ln\left(\left|{t - 1}\right|\right) + \ln\left(\left|{t + 1}\right|\right)}{2} + C$$$A