Ολοκλήρωμα του $$$\frac{\ln\left(- x\right)}{2}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{\ln\left(- x\right)}{2}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{\ln\left(- x\right)}{2}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(x \right)} = \ln{\left(- x \right)}$$$:

$${\color{red}{\int{\frac{\ln{\left(- x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\ln{\left(- x \right)} d x}}{2}\right)}}$$

Έστω $$$u=- x$$$.

Τότε $$$du=\left(- x\right)^{\prime }dx = - dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = - du$$$.

Επομένως,

$$\frac{{\color{red}{\int{\ln{\left(- x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}}{2}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=-1$$$ και $$$f{\left(u \right)} = \ln{\left(u \right)}$$$:

$$\frac{{\color{red}{\int{\left(- \ln{\left(u \right)}\right)d u}}}}{2} = \frac{{\color{red}{\left(- \int{\ln{\left(u \right)} d u}\right)}}}{2}$$

Για το ολοκλήρωμα $$$\int{\ln{\left(u \right)} d u}$$$, χρησιμοποιήστε την ολοκλήρωση κατά μέρη $$$\int \operatorname{g} \operatorname{dv} = \operatorname{g}\operatorname{v} - \int \operatorname{v} \operatorname{dg}$$$.

Έστω $$$\operatorname{g}=\ln{\left(u \right)}$$$ και $$$\operatorname{dv}=du$$$.

Τότε $$$\operatorname{dg}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u}$$$ (τα βήματα φαίνονται ») και $$$\operatorname{v}=\int{1 d u}=u$$$ (τα βήματα φαίνονται »).

Επομένως,

$$- \frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{2}=- \frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{2}=- \frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{2}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:

$$- \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = - \frac{u \ln{\left(u \right)}}{2} + \frac{{\color{red}{u}}}{2}$$

Θυμηθείτε ότι $$$u=- x$$$:

$$\frac{{\color{red}{u}}}{2} - \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{2} = \frac{{\color{red}{\left(- x\right)}}}{2} - \frac{{\color{red}{\left(- x\right)}} \ln{\left({\color{red}{\left(- x\right)}} \right)}}{2}$$

Επομένως,

$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \ln{\left(- x \right)}}{2} - \frac{x}{2}$$

Απλοποιήστε:

$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \left(\ln{\left(- x \right)} - 1\right)}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{\ln{\left(- x \right)}}{2} d x} = \frac{x \left(\ln{\left(- x \right)} - 1\right)}{2}+C$$

Απάντηση

$$$\int \frac{\ln\left(- x\right)}{2}\, dx = \frac{x \left(\ln\left(- x\right) - 1\right)}{2} + C$$$A


Please try a new game Rotatly