Ολοκλήρωμα του $$$- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)\, dx$$$.

Λύση

Η είσοδος επαναγράφεται: $$$\int{\left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)d x}=\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x}$$$.

Έστω $$$u=x^{2}$$$.

Τότε $$$du=\left(x^{2}\right)^{\prime }dx = 2 x dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$x dx = \frac{du}{2}$$$.

Το ολοκλήρωμα γίνεται

$${\color{red}{\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x}}} = {\color{red}{\int{\left(- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{10}\right)d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=- \frac{1}{10}$$$ και $$$f{\left(u \right)} = \left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}$$$:

$${\color{red}{\int{\left(- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{10}\right)d u}}} = {\color{red}{\left(- \frac{\int{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u} d u}}{10}\right)}}$$

Apply the exponential rule $$$\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}$$$ with $$$a=\frac{2^{\frac{2}{5}}}{2}$$$:

$$- \frac{{\color{red}{\int{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u} d u}}}}{10} = - \frac{{\color{red}{\frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{u}}{\ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}}}}{10}$$

Θυμηθείτε ότι $$$u=x^{2}$$$:

$$- \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{{\color{red}{u}}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}} = - \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{{\color{red}{x^{2}}}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}$$

Επομένως,

$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = - \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{10 \ln{\left(\frac{2^{\frac{2}{5}}}{2} \right)}}$$

Απλοποιήστε:

$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln{\left(2 \right)}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- \frac{x \left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{5}\right)d x} = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln{\left(2 \right)}}+C$$

Απάντηση

$$$\int \left(- \frac{2^{- \frac{3 x^{2}}{5}} x}{5}\right)\, dx = \frac{\left(\frac{2^{\frac{2}{5}}}{2}\right)^{x^{2}}}{6 \ln\left(2\right)} + C$$$A


Please try a new game Rotatly