Ολοκλήρωμα του $$$\frac{3 - \frac{1}{x^{2}}}{3 x}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{3 - \frac{1}{x^{2}}}{3 x}\, dx$$$.
Λύση
Η είσοδος επαναγράφεται: $$$\int{\frac{3 - \frac{1}{x^{2}}}{3 x} d x}=\int{\frac{1 - \frac{1}{3 x^{2}}}{x} d x}$$$.
Simplify:
$${\color{red}{\int{\frac{1 - \frac{1}{3 x^{2}}}{x} d x}}} = {\color{red}{\int{\frac{3 x^{2} - 1}{3 x^{3}} d x}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{3}$$$ και $$$f{\left(x \right)} = \frac{3 x^{2} - 1}{x^{3}}$$$:
$${\color{red}{\int{\frac{3 x^{2} - 1}{3 x^{3}} d x}}} = {\color{red}{\left(\frac{\int{\frac{3 x^{2} - 1}{x^{3}} d x}}{3}\right)}}$$
Expand the expression:
$$\frac{{\color{red}{\int{\frac{3 x^{2} - 1}{x^{3}} d x}}}}{3} = \frac{{\color{red}{\int{\left(\frac{3}{x} - \frac{1}{x^{3}}\right)d x}}}}{3}$$
Ολοκληρώστε όρο προς όρο:
$$\frac{{\color{red}{\int{\left(\frac{3}{x} - \frac{1}{x^{3}}\right)d x}}}}{3} = \frac{{\color{red}{\left(- \int{\frac{1}{x^{3}} d x} + \int{\frac{3}{x} d x}\right)}}}{3}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=-3$$$:
$$\frac{\int{\frac{3}{x} d x}}{3} - \frac{{\color{red}{\int{\frac{1}{x^{3}} d x}}}}{3}=\frac{\int{\frac{3}{x} d x}}{3} - \frac{{\color{red}{\int{x^{-3} d x}}}}{3}=\frac{\int{\frac{3}{x} d x}}{3} - \frac{{\color{red}{\frac{x^{-3 + 1}}{-3 + 1}}}}{3}=\frac{\int{\frac{3}{x} d x}}{3} - \frac{{\color{red}{\left(- \frac{x^{-2}}{2}\right)}}}{3}=\frac{\int{\frac{3}{x} d x}}{3} - \frac{{\color{red}{\left(- \frac{1}{2 x^{2}}\right)}}}{3}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=3$$$ και $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$\frac{{\color{red}{\int{\frac{3}{x} d x}}}}{3} + \frac{1}{6 x^{2}} = \frac{{\color{red}{\left(3 \int{\frac{1}{x} d x}\right)}}}{3} + \frac{1}{6 x^{2}}$$
Το ολοκλήρωμα του $$$\frac{1}{x}$$$ είναι $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$${\color{red}{\int{\frac{1}{x} d x}}} + \frac{1}{6 x^{2}} = {\color{red}{\ln{\left(\left|{x}\right| \right)}}} + \frac{1}{6 x^{2}}$$
Επομένως,
$$\int{\frac{1 - \frac{1}{3 x^{2}}}{x} d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{6 x^{2}}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{1 - \frac{1}{3 x^{2}}}{x} d x} = \ln{\left(\left|{x}\right| \right)} + \frac{1}{6 x^{2}}+C$$
Απάντηση
$$$\int \frac{3 - \frac{1}{x^{2}}}{3 x}\, dx = \left(\ln\left(\left|{x}\right|\right) + \frac{1}{6 x^{2}}\right) + C$$$A