Ολοκλήρωμα του $$$\sqrt{4 - x^{2}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\sqrt{4 - x^{2}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \sqrt{4 - x^{2}}\, dx$$$.

Λύση

Έστω $$$x=2 \sin{\left(u \right)}$$$.

Τότε $$$dx=\left(2 \sin{\left(u \right)}\right)^{\prime }du = 2 \cos{\left(u \right)} du$$$ (τα βήματα μπορούν να προβληθούν »).

Επίσης, έπεται ότι $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$.

Επομένως,

$$$\sqrt{4 - x^{2}} = \sqrt{4 - 4 \sin^{2}{\left( u \right)}}$$$

Χρησιμοποιήστε την ταυτότητα $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:

$$$\sqrt{4 - 4 \sin^{2}{\left( u \right)}}=2 \sqrt{1 - \sin^{2}{\left( u \right)}}=2 \sqrt{\cos^{2}{\left( u \right)}}$$$

Υποθέτοντας ότι $$$\cos{\left( u \right)} \ge 0$$$, προκύπτουν τα ακόλουθα:

$$$2 \sqrt{\cos^{2}{\left( u \right)}} = 2 \cos{\left( u \right)}$$$

Το ολοκλήρωμα μπορεί να γραφεί εκ νέου ως

$${\color{red}{\int{\sqrt{4 - x^{2}} d x}}} = {\color{red}{\int{4 \cos^{2}{\left(u \right)} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=4$$$ και $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$:

$${\color{red}{\int{4 \cos^{2}{\left(u \right)} d u}}} = {\color{red}{\left(4 \int{\cos^{2}{\left(u \right)} d u}\right)}}$$

Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ με $$$\alpha= u $$$:

$$4 {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = 4 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$:

$$4 {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = 4 {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$

Ολοκληρώστε όρο προς όρο:

$$2 {\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:

$$2 \int{\cos{\left(2 u \right)} d u} + 2 {\color{red}{\int{1 d u}}} = 2 \int{\cos{\left(2 u \right)} d u} + 2 {\color{red}{u}}$$

Έστω $$$v=2 u$$$.

Τότε $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$du = \frac{dv}{2}$$$.

Επομένως,

$$2 u + 2 {\color{red}{\int{\cos{\left(2 u \right)} d u}}} = 2 u + 2 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(v \right)} = \cos{\left(v \right)}$$$:

$$2 u + 2 {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}} = 2 u + 2 {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}$$

Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$2 u + {\color{red}{\int{\cos{\left(v \right)} d v}}} = 2 u + {\color{red}{\sin{\left(v \right)}}}$$

Θυμηθείτε ότι $$$v=2 u$$$:

$$2 u + \sin{\left({\color{red}{v}} \right)} = 2 u + \sin{\left({\color{red}{\left(2 u\right)}} \right)}$$

Θυμηθείτε ότι $$$u=\operatorname{asin}{\left(\frac{x}{2} \right)}$$$:

$$\sin{\left(2 {\color{red}{u}} \right)} + 2 {\color{red}{u}} = \sin{\left(2 {\color{red}{\operatorname{asin}{\left(\frac{x}{2} \right)}}} \right)} + 2 {\color{red}{\operatorname{asin}{\left(\frac{x}{2} \right)}}}$$

Επομένως,

$$\int{\sqrt{4 - x^{2}} d x} = \sin{\left(2 \operatorname{asin}{\left(\frac{x}{2} \right)} \right)} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}$$

Χρησιμοποιώντας τους τύπους $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, απλοποιήστε την παράσταση:

$$\int{\sqrt{4 - x^{2}} d x} = x \sqrt{1 - \frac{x^{2}}{4}} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}$$

Απλοποιήστε περαιτέρω:

$$\int{\sqrt{4 - x^{2}} d x} = \frac{x \sqrt{4 - x^{2}}}{2} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\sqrt{4 - x^{2}} d x} = \frac{x \sqrt{4 - x^{2}}}{2} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}+C$$

Απάντηση

$$$\int \sqrt{4 - x^{2}}\, dx = \left(\frac{x \sqrt{4 - x^{2}}}{2} + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}\right) + C$$$A


Please try a new game Rotatly