Ολοκλήρωμα της $$$f x \left(x - 1\right)$$$ ως προς $$$x$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$f x \left(x - 1\right)$$$ ως προς $$$x$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int f x \left(x - 1\right)\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=f$$$ και $$$f{\left(x \right)} = x \left(x - 1\right)$$$:

$${\color{red}{\int{f x \left(x - 1\right) d x}}} = {\color{red}{f \int{x \left(x - 1\right) d x}}}$$

Expand the expression:

$$f {\color{red}{\int{x \left(x - 1\right) d x}}} = f {\color{red}{\int{\left(x^{2} - x\right)d x}}}$$

Ολοκληρώστε όρο προς όρο:

$$f {\color{red}{\int{\left(x^{2} - x\right)d x}}} = f {\color{red}{\left(- \int{x d x} + \int{x^{2} d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:

$$f \left(- \int{x d x} + {\color{red}{\int{x^{2} d x}}}\right)=f \left(- \int{x d x} + {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}\right)=f \left(- \int{x d x} + {\color{red}{\left(\frac{x^{3}}{3}\right)}}\right)$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$f \left(\frac{x^{3}}{3} - {\color{red}{\int{x d x}}}\right)=f \left(\frac{x^{3}}{3} - {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}\right)=f \left(\frac{x^{3}}{3} - {\color{red}{\left(\frac{x^{2}}{2}\right)}}\right)$$

Επομένως,

$$\int{f x \left(x - 1\right) d x} = f \left(\frac{x^{3}}{3} - \frac{x^{2}}{2}\right)$$

Απλοποιήστε:

$$\int{f x \left(x - 1\right) d x} = \frac{f x^{2} \left(2 x - 3\right)}{6}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{f x \left(x - 1\right) d x} = \frac{f x^{2} \left(2 x - 3\right)}{6}+C$$

Απάντηση

$$$\int f x \left(x - 1\right)\, dx = \frac{f x^{2} \left(2 x - 3\right)}{6} + C$$$A


Please try a new game Rotatly