Ολοκλήρωμα του $$$x^{3} - 4 x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(x^{3} - 4 x\right)\, dx$$$.
Λύση
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(x^{3} - 4 x\right)d x}}} = {\color{red}{\left(- \int{4 x d x} + \int{x^{3} d x}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=3$$$:
$$- \int{4 x d x} + {\color{red}{\int{x^{3} d x}}}=- \int{4 x d x} + {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=- \int{4 x d x} + {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=4$$$ και $$$f{\left(x \right)} = x$$$:
$$\frac{x^{4}}{4} - {\color{red}{\int{4 x d x}}} = \frac{x^{4}}{4} - {\color{red}{\left(4 \int{x d x}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:
$$\frac{x^{4}}{4} - 4 {\color{red}{\int{x d x}}}=\frac{x^{4}}{4} - 4 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\frac{x^{4}}{4} - 4 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Επομένως,
$$\int{\left(x^{3} - 4 x\right)d x} = \frac{x^{4}}{4} - 2 x^{2}$$
Απλοποιήστε:
$$\int{\left(x^{3} - 4 x\right)d x} = \frac{x^{2} \left(x^{2} - 8\right)}{4}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(x^{3} - 4 x\right)d x} = \frac{x^{2} \left(x^{2} - 8\right)}{4}+C$$
Απάντηση
$$$\int \left(x^{3} - 4 x\right)\, dx = \frac{x^{2} \left(x^{2} - 8\right)}{4} + C$$$A