Ολοκλήρωμα του $$$\frac{x^{2} - 3}{x^{3} - 72 x}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{x^{2} - 3}{x^{3} - 72 x}\, dx$$$.
Λύση
Εκτελέστε αποσύνθεση σε μερικά κλάσματα (τα βήματα μπορούν να προβληθούν »):
$${\color{red}{\int{\frac{x^{2} - 3}{x^{3} - 72 x} d x}}} = {\color{red}{\int{\left(\frac{23}{48 \left(x + 6 \sqrt{2}\right)} + \frac{23}{48 \left(x - 6 \sqrt{2}\right)} + \frac{1}{24 x}\right)d x}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(\frac{23}{48 \left(x + 6 \sqrt{2}\right)} + \frac{23}{48 \left(x - 6 \sqrt{2}\right)} + \frac{1}{24 x}\right)d x}}} = {\color{red}{\left(\int{\frac{1}{24 x} d x} + \int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x}\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{24}$$$ και $$$f{\left(x \right)} = \frac{1}{x}$$$:
$$\int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + {\color{red}{\int{\frac{1}{24 x} d x}}} = \int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + {\color{red}{\left(\frac{\int{\frac{1}{x} d x}}{24}\right)}}$$
Το ολοκλήρωμα του $$$\frac{1}{x}$$$ είναι $$$\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}$$$:
$$\int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{{\color{red}{\int{\frac{1}{x} d x}}}}{24} = \int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{{\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{24}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{23}{48}$$$ και $$$f{\left(x \right)} = \frac{1}{x - 6 \sqrt{2}}$$$:
$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + {\color{red}{\int{\frac{23}{48 \left(x - 6 \sqrt{2}\right)} d x}}} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + {\color{red}{\left(\frac{23 \int{\frac{1}{x - 6 \sqrt{2}} d x}}{48}\right)}}$$
Έστω $$$u=x - 6 \sqrt{2}$$$.
Τότε $$$du=\left(x - 6 \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.
Επομένως,
$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{23 {\color{red}{\int{\frac{1}{x - 6 \sqrt{2}} d x}}}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{23 {\color{red}{\int{\frac{1}{u} d u}}}}{48}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{23 {\color{red}{\int{\frac{1}{u} d u}}}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} + \frac{23 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{48}$$
Θυμηθείτε ότι $$$u=x - 6 \sqrt{2}$$$:
$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{48} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{{\color{red}{\left(x - 6 \sqrt{2}\right)}}}\right| \right)}}{48} + \int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{23}{48}$$$ και $$$f{\left(x \right)} = \frac{1}{x + 6 \sqrt{2}}$$$:
$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + {\color{red}{\int{\frac{23}{48 \left(x + 6 \sqrt{2}\right)} d x}}} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + {\color{red}{\left(\frac{23 \int{\frac{1}{x + 6 \sqrt{2}} d x}}{48}\right)}}$$
Έστω $$$u=x + 6 \sqrt{2}$$$.
Τότε $$$du=\left(x + 6 \sqrt{2}\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.
Το ολοκλήρωμα γίνεται
$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 {\color{red}{\int{\frac{1}{x + 6 \sqrt{2}} d x}}}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 {\color{red}{\int{\frac{1}{u} d u}}}}{48}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 {\color{red}{\int{\frac{1}{u} d u}}}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{48}$$
Θυμηθείτε ότι $$$u=x + 6 \sqrt{2}$$$:
$$\frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{48} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 \ln{\left(\left|{{\color{red}{\left(x + 6 \sqrt{2}\right)}}}\right| \right)}}{48}$$
Επομένως,
$$\int{\frac{x^{2} - 3}{x^{3} - 72 x} d x} = \frac{\ln{\left(\left|{x}\right| \right)}}{24} + \frac{23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)}}{48} + \frac{23 \ln{\left(\left|{x + 6 \sqrt{2}}\right| \right)}}{48}$$
Απλοποιήστε:
$$\int{\frac{x^{2} - 3}{x^{3} - 72 x} d x} = \frac{2 \ln{\left(\left|{x}\right| \right)} + 23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)} + 23 \ln{\left(\left|{x + 6 \sqrt{2}}\right| \right)}}{48}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{x^{2} - 3}{x^{3} - 72 x} d x} = \frac{2 \ln{\left(\left|{x}\right| \right)} + 23 \ln{\left(\left|{x - 6 \sqrt{2}}\right| \right)} + 23 \ln{\left(\left|{x + 6 \sqrt{2}}\right| \right)}}{48}+C$$
Απάντηση
$$$\int \frac{x^{2} - 3}{x^{3} - 72 x}\, dx = \frac{2 \ln\left(\left|{x}\right|\right) + 23 \ln\left(\left|{x - 6 \sqrt{2}}\right|\right) + 23 \ln\left(\left|{x + 6 \sqrt{2}}\right|\right)}{48} + C$$$A