Ολοκλήρωμα της $$$9 d t$$$ ως προς $$$t$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$9 d t$$$ ως προς $$$t$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int 9 d t\, dt$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=9 d$$$ και $$$f{\left(t \right)} = t$$$:

$${\color{red}{\int{9 d t d t}}} = {\color{red}{\left(9 d \int{t d t}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$9 d {\color{red}{\int{t d t}}}=9 d {\color{red}{\frac{t^{1 + 1}}{1 + 1}}}=9 d {\color{red}{\left(\frac{t^{2}}{2}\right)}}$$

Επομένως,

$$\int{9 d t d t} = \frac{9 d t^{2}}{2}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{9 d t d t} = \frac{9 d t^{2}}{2}+C$$

Απάντηση

$$$\int 9 d t\, dt = \frac{9 d t^{2}}{2} + C$$$A


Please try a new game Rotatly