Ολοκλήρωμα του $$$- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)\, dx$$$.
Λύση
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + \int{\cos^{3}{\left(x \right)} d x}\right)}}$$
Απομονώστε ένα συνημίτονο και εκφράστε τα υπόλοιπα σε όρους του ημιτόνου, χρησιμοποιώντας τον τύπο $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ με $$$\alpha=x$$$:
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\cos^{3}{\left(x \right)} d x}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}}$$
Έστω $$$u=\sin{\left(x \right)}$$$.
Τότε $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\cos{\left(x \right)} dx = du$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \cos{\left(x \right)} d x}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - u^{2}\right)d u}}}$$
Ολοκληρώστε όρο προς όρο:
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\int{\left(1 - u^{2}\right)d u}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - \int{u^{2} d u} + {\color{red}{\int{1 d u}}} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - \int{u^{2} d u} + {\color{red}{u}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=2$$$:
$$u - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\int{u^{2} d u}}}=u - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} - {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
Θυμηθείτε ότι $$$u=\sin{\left(x \right)}$$$:
$$- \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = - \int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} + {\color{red}{\sin{\left(x \right)}}} - \frac{{\color{red}{\sin{\left(x \right)}}}^{3}}{3}$$
Εφαρμόστε τον τύπο υποβιβασμού δυνάμεων $$$\sin^{2}{\left(\alpha \right)} = \frac{1}{2} - \frac{\cos{\left(2 \alpha \right)}}{2}$$$ με $$$\alpha=x$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\int{3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x}}} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\int{\frac{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}}{2} d x}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(x \right)} = 3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\int{\frac{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)}}{2} d x}}} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - {\color{red}{\left(\frac{\int{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)} d x}}{2}\right)}}$$
Expand the expression:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\int{3 \left(1 - \cos{\left(2 x \right)}\right) \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\int{\left(- 3 \cos{\left(x \right)} \cos{\left(2 x \right)} + 3 \cos{\left(x \right)}\right)d x}}}}{2}$$
Ολοκληρώστε όρο προς όρο:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\int{\left(- 3 \cos{\left(x \right)} \cos{\left(2 x \right)} + 3 \cos{\left(x \right)}\right)d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} - \frac{{\color{red}{\left(- \int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x} + \int{3 \cos{\left(x \right)} d x}\right)}}}{2}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=3$$$ και $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\int{3 \cos{\left(x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{{\color{red}{\left(3 \int{\cos{\left(x \right)} d x}\right)}}}{2}$$
Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} + \sin{\left(x \right)} + \frac{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}{2} - \frac{3 {\color{red}{\sin{\left(x \right)}}}}{2}$$
Επαναγράψτε το $$$\cos\left(x \right)\cos\left(2 x \right)$$$ χρησιμοποιώντας τον τύπο $$$\cos\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \cos\left(\alpha-\beta \right)+\frac{1}{2} \cos\left(\alpha+\beta \right)$$$ με $$$\alpha=x$$$ και $$$\beta=2 x$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{3 \cos{\left(x \right)} \cos{\left(2 x \right)} d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{\left(\frac{3 \cos{\left(x \right)}}{2} + \frac{3 \cos{\left(3 x \right)}}{2}\right)d x}}}}{2}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(x \right)} = 3 \cos{\left(x \right)} + 3 \cos{\left(3 x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{\left(\frac{3 \cos{\left(x \right)}}{2} + \frac{3 \cos{\left(3 x \right)}}{2}\right)d x}}}}{2} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(3 \cos{\left(x \right)} + 3 \cos{\left(3 x \right)}\right)d x}}{2}\right)}}}{2}$$
Ολοκληρώστε όρο προς όρο:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\int{\left(3 \cos{\left(x \right)} + 3 \cos{\left(3 x \right)}\right)d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{{\color{red}{\left(\int{3 \cos{\left(x \right)} d x} + \int{3 \cos{\left(3 x \right)} d x}\right)}}}{4}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=3$$$ και $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\int{3 \cos{\left(x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{{\color{red}{\left(3 \int{\cos{\left(x \right)} d x}\right)}}}{4}$$
Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\int{\cos{\left(x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} + \frac{\int{3 \cos{\left(3 x \right)} d x}}{4} + \frac{3 {\color{red}{\sin{\left(x \right)}}}}{4}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=3$$$ και $$$f{\left(x \right)} = \cos{\left(3 x \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\int{3 \cos{\left(3 x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\left(3 \int{\cos{\left(3 x \right)} d x}\right)}}}{4}$$
Έστω $$$u=3 x$$$.
Τότε $$$du=\left(3 x\right)^{\prime }dx = 3 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = \frac{du}{3}$$$.
Το ολοκλήρωμα γίνεται
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\cos{\left(3 x \right)} d x}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{4}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{3}$$$ και $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{3} d u}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{3}\right)}}}{4}$$
Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{4}$$
Θυμηθείτε ότι $$$u=3 x$$$:
$$- \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{4} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{\sin{\left({\color{red}{\left(3 x\right)}} \right)}}{4}$$
Επομένως,
$$\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x} = - \frac{\sin^{3}{\left(x \right)}}{3} + \frac{\sin{\left(x \right)}}{4} + \frac{\sin{\left(3 x \right)}}{4}$$
Απλοποιήστε:
$$\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x} = \frac{\sin{\left(3 x \right)}}{3}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)d x} = \frac{\sin{\left(3 x \right)}}{3}+C$$
Απάντηση
$$$\int \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + \cos^{3}{\left(x \right)}\right)\, dx = \frac{\sin{\left(3 x \right)}}{3} + C$$$A