Ολοκλήρωμα του $$$\left(- \sin{\left(\frac{x}{2} \right)} + \cos{\left(\frac{x}{2} \right)}\right)^{2}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(- \sin{\left(\frac{x}{2} \right)} + \cos{\left(\frac{x}{2} \right)}\right)^{2}\, dx$$$.
Λύση
Έστω $$$u=\frac{x}{2}$$$.
Τότε $$$du=\left(\frac{x}{2}\right)^{\prime }dx = \frac{dx}{2}$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = 2 du$$$.
Επομένως,
$${\color{red}{\int{\left(- \sin{\left(\frac{x}{2} \right)} + \cos{\left(\frac{x}{2} \right)}\right)^{2} d x}}} = {\color{red}{\int{\left(2 - 2 \sin{\left(2 u \right)}\right)d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=2$$$ και $$$f{\left(u \right)} = 1 - \sin{\left(2 u \right)}$$$:
$${\color{red}{\int{\left(2 - 2 \sin{\left(2 u \right)}\right)d u}}} = {\color{red}{\left(2 \int{\left(1 - \sin{\left(2 u \right)}\right)d u}\right)}}$$
Ολοκληρώστε όρο προς όρο:
$$2 {\color{red}{\int{\left(1 - \sin{\left(2 u \right)}\right)d u}}} = 2 {\color{red}{\left(\int{1 d u} - \int{\sin{\left(2 u \right)} d u}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, du = c u$$$ με $$$c=1$$$:
$$- 2 \int{\sin{\left(2 u \right)} d u} + 2 {\color{red}{\int{1 d u}}} = - 2 \int{\sin{\left(2 u \right)} d u} + 2 {\color{red}{u}}$$
Έστω $$$v=2 u$$$.
Τότε $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$du = \frac{dv}{2}$$$.
Το ολοκλήρωμα μπορεί να επαναγραφεί ως
$$2 u - 2 {\color{red}{\int{\sin{\left(2 u \right)} d u}}} = 2 u - 2 {\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(v \right)} = \sin{\left(v \right)}$$$:
$$2 u - 2 {\color{red}{\int{\frac{\sin{\left(v \right)}}{2} d v}}} = 2 u - 2 {\color{red}{\left(\frac{\int{\sin{\left(v \right)} d v}}{2}\right)}}$$
Το ολοκλήρωμα του ημιτόνου είναι $$$\int{\sin{\left(v \right)} d v} = - \cos{\left(v \right)}$$$:
$$2 u - {\color{red}{\int{\sin{\left(v \right)} d v}}} = 2 u - {\color{red}{\left(- \cos{\left(v \right)}\right)}}$$
Θυμηθείτε ότι $$$v=2 u$$$:
$$2 u + \cos{\left({\color{red}{v}} \right)} = 2 u + \cos{\left({\color{red}{\left(2 u\right)}} \right)}$$
Θυμηθείτε ότι $$$u=\frac{x}{2}$$$:
$$\cos{\left(2 {\color{red}{u}} \right)} + 2 {\color{red}{u}} = \cos{\left(2 {\color{red}{\left(\frac{x}{2}\right)}} \right)} + 2 {\color{red}{\left(\frac{x}{2}\right)}}$$
Επομένως,
$$\int{\left(- \sin{\left(\frac{x}{2} \right)} + \cos{\left(\frac{x}{2} \right)}\right)^{2} d x} = x + \cos{\left(x \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(- \sin{\left(\frac{x}{2} \right)} + \cos{\left(\frac{x}{2} \right)}\right)^{2} d x} = x + \cos{\left(x \right)}+C$$
Απάντηση
$$$\int \left(- \sin{\left(\frac{x}{2} \right)} + \cos{\left(\frac{x}{2} \right)}\right)^{2}\, dx = \left(x + \cos{\left(x \right)}\right) + C$$$A