Ολοκλήρωμα του $$$\frac{2 x}{x - 1}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{2 x}{x - 1}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{2 x}{x - 1}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=2$$$ και $$$f{\left(x \right)} = \frac{x}{x - 1}$$$:

$${\color{red}{\int{\frac{2 x}{x - 1} d x}}} = {\color{red}{\left(2 \int{\frac{x}{x - 1} d x}\right)}}$$

Επαναγράψτε και διασπάστε το κλάσμα:

$$2 {\color{red}{\int{\frac{x}{x - 1} d x}}} = 2 {\color{red}{\int{\left(1 + \frac{1}{x - 1}\right)d x}}}$$

Ολοκληρώστε όρο προς όρο:

$$2 {\color{red}{\int{\left(1 + \frac{1}{x - 1}\right)d x}}} = 2 {\color{red}{\left(\int{1 d x} + \int{\frac{1}{x - 1} d x}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=1$$$:

$$2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{\int{1 d x}}} = 2 \int{\frac{1}{x - 1} d x} + 2 {\color{red}{x}}$$

Έστω $$$u=x - 1$$$.

Τότε $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Το ολοκλήρωμα μπορεί να επαναγραφεί ως

$$2 x + 2 {\color{red}{\int{\frac{1}{x - 1} d x}}} = 2 x + 2 {\color{red}{\int{\frac{1}{u} d u}}}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$2 x + 2 {\color{red}{\int{\frac{1}{u} d u}}} = 2 x + 2 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Θυμηθείτε ότι $$$u=x - 1$$$:

$$2 x + 2 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = 2 x + 2 \ln{\left(\left|{{\color{red}{\left(x - 1\right)}}}\right| \right)}$$

Επομένως,

$$\int{\frac{2 x}{x - 1} d x} = 2 x + 2 \ln{\left(\left|{x - 1}\right| \right)}$$

Απλοποιήστε:

$$\int{\frac{2 x}{x - 1} d x} = 2 \left(x + \ln{\left(\left|{x - 1}\right| \right)}\right)$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{2 x}{x - 1} d x} = 2 \left(x + \ln{\left(\left|{x - 1}\right| \right)}\right)+C$$

Απάντηση

$$$\int \frac{2 x}{x - 1}\, dx = 2 \left(x + \ln\left(\left|{x - 1}\right|\right)\right) + C$$$A


Please try a new game Rotatly