Ολοκλήρωμα του $$$\frac{2 x^{3}}{x^{2} - 9}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{2 x^{3}}{x^{2} - 9}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{2 x^{3}}{x^{2} - 9}\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=2$$$ και $$$f{\left(x \right)} = \frac{x^{3}}{x^{2} - 9}$$$:

$${\color{red}{\int{\frac{2 x^{3}}{x^{2} - 9} d x}}} = {\color{red}{\left(2 \int{\frac{x^{3}}{x^{2} - 9} d x}\right)}}$$

Εφόσον ο βαθμός του αριθμητή δεν είναι μικρότερος από τον βαθμό του παρονομαστή, εκτελέστε τη μακρά διαίρεση πολυωνύμων (τα βήματα φαίνονται »):

$$2 {\color{red}{\int{\frac{x^{3}}{x^{2} - 9} d x}}} = 2 {\color{red}{\int{\left(x + \frac{9 x}{x^{2} - 9}\right)d x}}}$$

Ολοκληρώστε όρο προς όρο:

$$2 {\color{red}{\int{\left(x + \frac{9 x}{x^{2} - 9}\right)d x}}} = 2 {\color{red}{\left(\int{x d x} + \int{\frac{9 x}{x^{2} - 9} d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=1$$$:

$$2 \int{\frac{9 x}{x^{2} - 9} d x} + 2 {\color{red}{\int{x d x}}}=2 \int{\frac{9 x}{x^{2} - 9} d x} + 2 {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=2 \int{\frac{9 x}{x^{2} - 9} d x} + 2 {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Έστω $$$u=x^{2} - 9$$$.

Τότε $$$du=\left(x^{2} - 9\right)^{\prime }dx = 2 x dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$x dx = \frac{du}{2}$$$.

Επομένως,

$$x^{2} + 2 {\color{red}{\int{\frac{9 x}{x^{2} - 9} d x}}} = x^{2} + 2 {\color{red}{\int{\frac{9}{2 u} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{9}{2}$$$ και $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$x^{2} + 2 {\color{red}{\int{\frac{9}{2 u} d u}}} = x^{2} + 2 {\color{red}{\left(\frac{9 \int{\frac{1}{u} d u}}{2}\right)}}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x^{2} + 9 {\color{red}{\int{\frac{1}{u} d u}}} = x^{2} + 9 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}$$

Θυμηθείτε ότι $$$u=x^{2} - 9$$$:

$$x^{2} + 9 \ln{\left(\left|{{\color{red}{u}}}\right| \right)} = x^{2} + 9 \ln{\left(\left|{{\color{red}{\left(x^{2} - 9\right)}}}\right| \right)}$$

Επομένως,

$$\int{\frac{2 x^{3}}{x^{2} - 9} d x} = x^{2} + 9 \ln{\left(\left|{x^{2} - 9}\right| \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{2 x^{3}}{x^{2} - 9} d x} = x^{2} + 9 \ln{\left(\left|{x^{2} - 9}\right| \right)}+C$$

Απάντηση

$$$\int \frac{2 x^{3}}{x^{2} - 9}\, dx = \left(x^{2} + 9 \ln\left(\left|{x^{2} - 9}\right|\right)\right) + C$$$A


Please try a new game Rotatly