Ολοκλήρωμα του $$$2 x^{3} \left(3 x - 2\right)$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int 2 x^{3} \left(3 x - 2\right)\, dx$$$.
Λύση
Η είσοδος επαναγράφεται: $$$\int{2 x^{3} \left(3 x - 2\right) d x}=\int{x^{3} \left(6 x - 4\right) d x}$$$.
Απλοποιήστε τον ολοκληρωτέο:
$${\color{red}{\int{x^{3} \left(6 x - 4\right) d x}}} = {\color{red}{\int{2 x^{3} \left(3 x - 2\right) d x}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=2$$$ και $$$f{\left(x \right)} = x^{3} \left(3 x - 2\right)$$$:
$${\color{red}{\int{2 x^{3} \left(3 x - 2\right) d x}}} = {\color{red}{\left(2 \int{x^{3} \left(3 x - 2\right) d x}\right)}}$$
Expand the expression:
$$2 {\color{red}{\int{x^{3} \left(3 x - 2\right) d x}}} = 2 {\color{red}{\int{\left(3 x^{4} - 2 x^{3}\right)d x}}}$$
Ολοκληρώστε όρο προς όρο:
$$2 {\color{red}{\int{\left(3 x^{4} - 2 x^{3}\right)d x}}} = 2 {\color{red}{\left(- \int{2 x^{3} d x} + \int{3 x^{4} d x}\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=2$$$ και $$$f{\left(x \right)} = x^{3}$$$:
$$2 \int{3 x^{4} d x} - 2 {\color{red}{\int{2 x^{3} d x}}} = 2 \int{3 x^{4} d x} - 2 {\color{red}{\left(2 \int{x^{3} d x}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=3$$$:
$$2 \int{3 x^{4} d x} - 4 {\color{red}{\int{x^{3} d x}}}=2 \int{3 x^{4} d x} - 4 {\color{red}{\frac{x^{1 + 3}}{1 + 3}}}=2 \int{3 x^{4} d x} - 4 {\color{red}{\left(\frac{x^{4}}{4}\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=3$$$ και $$$f{\left(x \right)} = x^{4}$$$:
$$- x^{4} + 2 {\color{red}{\int{3 x^{4} d x}}} = - x^{4} + 2 {\color{red}{\left(3 \int{x^{4} d x}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=4$$$:
$$- x^{4} + 6 {\color{red}{\int{x^{4} d x}}}=- x^{4} + 6 {\color{red}{\frac{x^{1 + 4}}{1 + 4}}}=- x^{4} + 6 {\color{red}{\left(\frac{x^{5}}{5}\right)}}$$
Επομένως,
$$\int{x^{3} \left(6 x - 4\right) d x} = \frac{6 x^{5}}{5} - x^{4}$$
Απλοποιήστε:
$$\int{x^{3} \left(6 x - 4\right) d x} = \frac{x^{4} \left(6 x - 5\right)}{5}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{x^{3} \left(6 x - 4\right) d x} = \frac{x^{4} \left(6 x - 5\right)}{5}+C$$
Απάντηση
$$$\int 2 x^{3} \left(3 x - 2\right)\, dx = \frac{x^{4} \left(6 x - 5\right)}{5} + C$$$A