Ολοκλήρωμα του $$$- 6 x^{6} - 16$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \left(- 6 x^{6} - 16\right)\, dx$$$.
Λύση
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(- 6 x^{6} - 16\right)d x}}} = {\color{red}{\left(- \int{16 d x} - \int{6 x^{6} d x}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=16$$$:
$$- \int{6 x^{6} d x} - {\color{red}{\int{16 d x}}} = - \int{6 x^{6} d x} - {\color{red}{\left(16 x\right)}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=6$$$ και $$$f{\left(x \right)} = x^{6}$$$:
$$- 16 x - {\color{red}{\int{6 x^{6} d x}}} = - 16 x - {\color{red}{\left(6 \int{x^{6} d x}\right)}}$$
Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=6$$$:
$$- 16 x - 6 {\color{red}{\int{x^{6} d x}}}=- 16 x - 6 {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- 16 x - 6 {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$
Επομένως,
$$\int{\left(- 6 x^{6} - 16\right)d x} = - \frac{6 x^{7}}{7} - 16 x$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\left(- 6 x^{6} - 16\right)d x} = - \frac{6 x^{7}}{7} - 16 x+C$$
Απάντηση
$$$\int \left(- 6 x^{6} - 16\right)\, dx = \left(- \frac{6 x^{7}}{7} - 16 x\right) + C$$$A