Ολοκλήρωμα του $$$- 6 x^{6} - 16$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$- 6 x^{6} - 16$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- 6 x^{6} - 16\right)\, dx$$$.

Λύση

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(- 6 x^{6} - 16\right)d x}}} = {\color{red}{\left(- \int{16 d x} - \int{6 x^{6} d x}\right)}}$$

Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=16$$$:

$$- \int{6 x^{6} d x} - {\color{red}{\int{16 d x}}} = - \int{6 x^{6} d x} - {\color{red}{\left(16 x\right)}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=6$$$ και $$$f{\left(x \right)} = x^{6}$$$:

$$- 16 x - {\color{red}{\int{6 x^{6} d x}}} = - 16 x - {\color{red}{\left(6 \int{x^{6} d x}\right)}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=6$$$:

$$- 16 x - 6 {\color{red}{\int{x^{6} d x}}}=- 16 x - 6 {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- 16 x - 6 {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$

Επομένως,

$$\int{\left(- 6 x^{6} - 16\right)d x} = - \frac{6 x^{7}}{7} - 16 x$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- 6 x^{6} - 16\right)d x} = - \frac{6 x^{7}}{7} - 16 x+C$$

Απάντηση

$$$\int \left(- 6 x^{6} - 16\right)\, dx = \left(- \frac{6 x^{7}}{7} - 16 x\right) + C$$$A


Please try a new game Rotatly