Ολοκλήρωμα του $$$\frac{x - 1}{x^{2} + x + 1}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{x - 1}{x^{2} + x + 1}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{x - 1}{x^{2} + x + 1}\, dx$$$.

Λύση

Ξαναγράψτε τον γραμμικό όρο ως $$$x - 1=x\color{red}{+\frac{1}{2}- \frac{1}{2}}-1=x+\frac{1}{2}- \frac{3}{2}$$$ και διασπάστε την παράσταση:

$${\color{red}{\int{\frac{x - 1}{x^{2} + x + 1} d x}}} = {\color{red}{\int{\left(\frac{x + \frac{1}{2}}{x^{2} + x + 1} - \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x}}}$$

Ολοκληρώστε όρο προς όρο:

$${\color{red}{\int{\left(\frac{x + \frac{1}{2}}{x^{2} + x + 1} - \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{x + \frac{1}{2}}{x^{2} + x + 1} d x} + \int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x}\right)}}$$

Έστω $$$u=x^{2} + x + 1$$$.

Τότε $$$du=\left(x^{2} + x + 1\right)^{\prime }dx = \left(2 x + 1\right) dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\left(2 x + 1\right) dx = du$$$.

Επομένως,

$$\int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x} + {\color{red}{\int{\frac{x + \frac{1}{2}}{x^{2} + x + 1} d x}}} = \int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x} + {\color{red}{\int{\frac{1}{2 u} d u}}}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{1}{2}$$$ και $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x} + {\color{red}{\int{\frac{1}{2 u} d u}}} = \int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x} + {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

Θυμηθείτε ότι $$$u=x^{2} + x + 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} + \int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x} = \frac{\ln{\left(\left|{{\color{red}{\left(x^{2} + x + 1\right)}}}\right| \right)}}{2} + \int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=- \frac{3}{2}$$$ και $$$f{\left(x \right)} = \frac{1}{x^{2} + x + 1}$$$:

$$\frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} + {\color{red}{\int{\left(- \frac{3}{2 \left(x^{2} + x + 1\right)}\right)d x}}} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} + {\color{red}{\left(- \frac{3 \int{\frac{1}{x^{2} + x + 1} d x}}{2}\right)}}$$

Συμπληρώστε το τετράγωνο (τα βήματα μπορούν να προβληθούν »): $$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}$$$:

$$\frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \frac{3 {\color{red}{\int{\frac{1}{x^{2} + x + 1} d x}}}}{2} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \frac{3 {\color{red}{\int{\frac{1}{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}} d x}}}}{2}$$

Έστω $$$u=x + \frac{1}{2}$$$.

Τότε $$$du=\left(x + \frac{1}{2}\right)^{\prime }dx = 1 dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$dx = du$$$.

Το ολοκλήρωμα γίνεται

$$\frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \frac{3 {\color{red}{\int{\frac{1}{\left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}} d x}}}}{2} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \frac{3 {\color{red}{\int{\frac{1}{u^{2} + \frac{3}{4}} d u}}}}{2}$$

Έστω $$$v=\frac{2 \sqrt{3} u}{3}$$$.

Τότε $$$dv=\left(\frac{2 \sqrt{3} u}{3}\right)^{\prime }du = \frac{2 \sqrt{3}}{3} du$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$du = \frac{\sqrt{3} dv}{2}$$$.

Επομένως,

$$\frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \frac{3 {\color{red}{\int{\frac{1}{u^{2} + \frac{3}{4}} d u}}}}{2} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \frac{3 {\color{red}{\int{\frac{2 \sqrt{3}}{3 \left(v^{2} + 1\right)} d v}}}}{2}$$

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ με $$$c=\frac{2 \sqrt{3}}{3}$$$ και $$$f{\left(v \right)} = \frac{1}{v^{2} + 1}$$$:

$$\frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \frac{3 {\color{red}{\int{\frac{2 \sqrt{3}}{3 \left(v^{2} + 1\right)} d v}}}}{2} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \frac{3 {\color{red}{\left(\frac{2 \sqrt{3} \int{\frac{1}{v^{2} + 1} d v}}{3}\right)}}}{2}$$

Το ολοκλήρωμα του $$$\frac{1}{v^{2} + 1}$$$ είναι $$$\int{\frac{1}{v^{2} + 1} d v} = \operatorname{atan}{\left(v \right)}$$$:

$$\frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \sqrt{3} {\color{red}{\int{\frac{1}{v^{2} + 1} d v}}} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \sqrt{3} {\color{red}{\operatorname{atan}{\left(v \right)}}}$$

Θυμηθείτε ότι $$$v=\frac{2 \sqrt{3} u}{3}$$$:

$$\frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \sqrt{3} \operatorname{atan}{\left({\color{red}{v}} \right)} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \sqrt{3} \operatorname{atan}{\left({\color{red}{\left(\frac{2 \sqrt{3} u}{3}\right)}} \right)}$$

Θυμηθείτε ότι $$$u=x + \frac{1}{2}$$$:

$$\frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \sqrt{3} \operatorname{atan}{\left(\frac{2 \sqrt{3} {\color{red}{u}}}{3} \right)} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \sqrt{3} \operatorname{atan}{\left(\frac{2 \sqrt{3} {\color{red}{\left(x + \frac{1}{2}\right)}}}{3} \right)}$$

Επομένως,

$$\int{\frac{x - 1}{x^{2} + x + 1} d x} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \sqrt{3} \operatorname{atan}{\left(\frac{2 \sqrt{3} \left(x + \frac{1}{2}\right)}{3} \right)}$$

Απλοποιήστε:

$$\int{\frac{x - 1}{x^{2} + x + 1} d x} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \sqrt{3} \operatorname{atan}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{x - 1}{x^{2} + x + 1} d x} = \frac{\ln{\left(\left|{x^{2} + x + 1}\right| \right)}}{2} - \sqrt{3} \operatorname{atan}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}+C$$

Απάντηση

$$$\int \frac{x - 1}{x^{2} + x + 1}\, dx = \left(\frac{\ln\left(\left|{x^{2} + x + 1}\right|\right)}{2} - \sqrt{3} \operatorname{atan}{\left(\frac{\sqrt{3} \left(2 x + 1\right)}{3} \right)}\right) + C$$$A


Please try a new game Rotatly