Ολοκλήρωμα του $$$\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}\, dx$$$.
Λύση
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=\frac{\pi}{2}$$$ και $$$f{\left(x \right)} = \frac{1}{x^{2} \sqrt{x^{2} - 1}}$$$:
$${\color{red}{\int{\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}} d x}}} = {\color{red}{\left(\frac{\pi \int{\frac{1}{x^{2} \sqrt{x^{2} - 1}} d x}}{2}\right)}}$$
Έστω $$$x=\cosh{\left(u \right)}$$$.
Τότε $$$dx=\left(\cosh{\left(u \right)}\right)^{\prime }du = \sinh{\left(u \right)} du$$$ (τα βήματα μπορούν να προβληθούν »).
Επίσης, έπεται ότι $$$u=\operatorname{acosh}{\left(x \right)}$$$.
Επομένως,
$$$\frac{1}{x^{2} \sqrt{x^{2} - 1}} = \frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{2}{\left( u \right)}}$$$
Χρησιμοποιήστε την ταυτότητα $$$\cosh^{2}{\left( u \right)} - 1 = \sinh^{2}{\left( u \right)}$$$:
$$$\frac{1}{\sqrt{\cosh^{2}{\left( u \right)} - 1} \cosh^{2}{\left( u \right)}}=\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}}$$$
Υποθέτοντας ότι $$$\sinh{\left( u \right)} \ge 0$$$, προκύπτουν τα ακόλουθα:
$$$\frac{1}{\sqrt{\sinh^{2}{\left( u \right)}} \cosh^{2}{\left( u \right)}} = \frac{1}{\sinh{\left( u \right)} \cosh^{2}{\left( u \right)}}$$$
Το ολοκλήρωμα γίνεται
$$\frac{\pi {\color{red}{\int{\frac{1}{x^{2} \sqrt{x^{2} - 1}} d x}}}}{2} = \frac{\pi {\color{red}{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}}}{2}$$
Εκφράστε την ολοκληρωτέα συνάρτηση σε όρους της υπερβολικής τέμνουσας:
$$\frac{\pi {\color{red}{\int{\frac{1}{\cosh^{2}{\left(u \right)}} d u}}}}{2} = \frac{\pi {\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{2}$$
Το ολοκλήρωμα του $$$\operatorname{sech}^{2}{\left(u \right)}$$$ είναι $$$\int{\operatorname{sech}^{2}{\left(u \right)} d u} = \tanh{\left(u \right)}$$$:
$$\frac{\pi {\color{red}{\int{\operatorname{sech}^{2}{\left(u \right)} d u}}}}{2} = \frac{\pi {\color{red}{\tanh{\left(u \right)}}}}{2}$$
Θυμηθείτε ότι $$$u=\operatorname{acosh}{\left(x \right)}$$$:
$$\frac{\pi \tanh{\left({\color{red}{u}} \right)}}{2} = \frac{\pi \tanh{\left({\color{red}{\operatorname{acosh}{\left(x \right)}}} \right)}}{2}$$
Επομένως,
$$\int{\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}} d x} = \frac{\pi \sqrt{x - 1} \sqrt{x + 1}}{2 x}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}} d x} = \frac{\pi \sqrt{x - 1} \sqrt{x + 1}}{2 x}+C$$
Απάντηση
$$$\int \frac{\pi}{2 x^{2} \sqrt{x^{2} - 1}}\, dx = \frac{\pi \sqrt{x - 1} \sqrt{x + 1}}{2 x} + C$$$A