Προσδιορίστε την κωνική τομή $$$y - 2 = - \frac{x^{2}}{8}$$$

Ο υπολογιστής θα αναγνωρίσει και θα προσδιορίσει τις ιδιότητες της κωνικής τομής $$$y - 2 = - \frac{x^{2}}{8}$$$, με εμφάνιση βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Αναγνωρίστε την κωνική τομή $$$y - 2 = - \frac{x^{2}}{8}$$$ και βρείτε τις ιδιότητές της.

Λύση

Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.

Στην περίπτωσή μας, $$$A = \frac{1}{8}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 1$$$, $$$F = -2$$$.

Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = - \frac{1}{8}$$$.

Στη συνέχεια, $$$B^{2} - 4 A C = 0$$$.

Εφόσον $$$B^{2} - 4 A C = 0$$$, η εξίσωση αναπαριστά παραβολή.

Για να βρείτε τις ιδιότητές της, χρησιμοποιήστε το parabola calculator.

Απάντηση

$$$y - 2 = - \frac{x^{2}}{8}$$$A αναπαριστά μια παραβολή.

Γενική μορφή: $$$\frac{x^{2}}{8} + y - 2 = 0$$$A.

Γράφημα: δείτε το graphing calculator.


Please try a new game Rotatly