Προσδιορίστε την κωνική τομή $$$710 x^{2} = 4260$$$

Ο υπολογιστής θα αναγνωρίσει και θα προσδιορίσει τις ιδιότητες της κωνικής τομής $$$710 x^{2} = 4260$$$, με εμφάνιση βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Αναγνωρίστε την κωνική τομή $$$710 x^{2} = 4260$$$ και βρείτε τις ιδιότητές της.

Λύση

Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.

Στην περίπτωσή μας, $$$A = 710$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = -4260$$$.

Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.

Στη συνέχεια, $$$B^{2} - 4 A C = 0$$$.

Εφόσον $$$\Delta = 0$$$, πρόκειται για εκφυλισμένη κωνική τομή.

Εφόσον $$$B^{2} - 4 A C = 0$$$, η εξίσωση παριστάνει δύο παράλληλες ευθείες.

Απάντηση

$$$710 x^{2} = 4260$$$A αναπαριστά το ζεύγος των ευθειών $$$x = - \sqrt{6}$$$, $$$x = \sqrt{6}$$$A.

Γενική μορφή: $$$710 x^{2} - 4260 = 0$$$A.

Παραγοντοποιημένη μορφή: $$$\left(x - \sqrt{6}\right) \left(x + \sqrt{6}\right) = 0$$$A.

Γράφημα: δείτε το graphing calculator.


Please try a new game Rotatly