Προσδιορίστε την κωνική τομή $$$4 x^{2} \sin{\left(4 \right)} \cos{\left(4 \right)} = 1$$$

Ο υπολογιστής θα αναγνωρίσει και θα προσδιορίσει τις ιδιότητες της κωνικής τομής $$$4 x^{2} \sin{\left(4 \right)} \cos{\left(4 \right)} = 1$$$, με εμφάνιση βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Αναγνωρίστε την κωνική τομή $$$4 x^{2} \sin{\left(4 \right)} \cos{\left(4 \right)} = 1$$$ και βρείτε τις ιδιότητές της.

Οι τριγωνομετρικές συναρτήσεις αναμένουν το όρισμα σε ακτίνια. Για να εισαγάγετε το όρισμα σε μοίρες, πολλαπλασιάστε το με pi/180, π.χ. γράψτε 45° ως 45*pi/180, ή χρησιμοποιήστε την κατάλληλη συνάρτηση προσθέτοντας 'd', π.χ. γράψτε sin(45°) ως sind(45).

Λύση

Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.

Στην περίπτωσή μας, $$$A = 2 \sin{\left(8 \right)}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = -1$$$.

Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.

Στη συνέχεια, $$$B^{2} - 4 A C = 0$$$.

Εφόσον $$$\Delta = 0$$$, πρόκειται για εκφυλισμένη κωνική τομή.

Εφόσον $$$B^{2} - 4 A C = 0$$$, η εξίσωση παριστάνει δύο παράλληλες ευθείες.

Απάντηση

$$$4 x^{2} \sin{\left(4 \right)} \cos{\left(4 \right)} = 1$$$A αναπαριστά το ζεύγος των ευθειών $$$x = - \frac{\sqrt{2}}{2 \sqrt{\sin{\left(8 \right)}}}$$$, $$$x = \frac{\sqrt{2}}{2 \sqrt{\sin{\left(8 \right)}}}$$$A.

Γενική μορφή: $$$2 x^{2} \sin{\left(8 \right)} - 1 = 0$$$A.

Παραγοντοποιημένη μορφή: $$$\left(2 x \sqrt{\sin{\left(8 \right)}} - \sqrt{2}\right) \left(2 x \sqrt{\sin{\left(8 \right)}} + \sqrt{2}\right) = 0$$$A.

Γράφημα: δείτε το graphing calculator.


Please try a new game Rotatly