Προσδιορίστε την κωνική τομή $$$\frac{x^{2}}{16} = \frac{1}{2}$$$

Ο υπολογιστής θα αναγνωρίσει και θα προσδιορίσει τις ιδιότητες της κωνικής τομής $$$\frac{x^{2}}{16} = \frac{1}{2}$$$, με εμφάνιση βημάτων.

Σχετικοί υπολογιστές: Υπολογιστής παραβολής, Υπολογιστής Κύκλου, Υπολογιστής έλλειψης, Υπολογιστής υπερβολής

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Αναγνωρίστε την κωνική τομή $$$\frac{x^{2}}{16} = \frac{1}{2}$$$ και βρείτε τις ιδιότητές της.

Λύση

Η γενική εξίσωση μιας κωνικής τομής είναι $$$A x^{2} + B x y + C y^{2} + D x + E y + F = 0$$$.

Στην περίπτωσή μας, $$$A = \frac{1}{16}$$$, $$$B = 0$$$, $$$C = 0$$$, $$$D = 0$$$, $$$E = 0$$$, $$$F = - \frac{1}{2}$$$.

Η διακρίνουσα της κωνικής τομής είναι $$$\Delta = 4 A C F - A E^{2} - B^{2} F + B D E - C D^{2} = 0$$$.

Στη συνέχεια, $$$B^{2} - 4 A C = 0$$$.

Εφόσον $$$\Delta = 0$$$, πρόκειται για εκφυλισμένη κωνική τομή.

Εφόσον $$$B^{2} - 4 A C = 0$$$, η εξίσωση παριστάνει δύο παράλληλες ευθείες.

Απάντηση

$$$\frac{x^{2}}{16} = \frac{1}{2}$$$A αναπαριστά το ζεύγος των ευθειών $$$x = - 2 \sqrt{2}$$$, $$$x = 2 \sqrt{2}$$$A.

Γενική μορφή: $$$\frac{x^{2}}{16} - \frac{1}{2} = 0$$$A.

Παραγοντοποιημένη μορφή: $$$\left(x - 2 \sqrt{2}\right) \left(x + 2 \sqrt{2}\right) = 0$$$A.

Γράφημα: δείτε το graphing calculator.


Please try a new game Rotatly