Primfaktorzerlegung von $$$4838$$$
Ihre Eingabe
Bestimme die Primfaktorzerlegung von $$$4838$$$.
Lösung
Beginnen Sie mit der Zahl $$$2$$$.
Bestimmen Sie, ob $$$4838$$$ divisible durch $$$2$$$ ist.
Es ist teilbar, daher teile $$$4838$$$ durch $$${\color{green}2}$$$: $$$\frac{4838}{2} = {\color{red}2419}$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$2$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$3$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$3$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$5$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$5$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$7$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$7$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$11$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$11$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$13$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$13$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$17$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$17$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$19$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$19$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$23$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$23$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$29$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$29$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$31$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$31$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$37$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$37$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$41$$$.
Bestimmen Sie, ob $$$2419$$$ durch $$$41$$$ teilbar ist.
Es ist teilbar, daher teile $$$2419$$$ durch $$${\color{green}41}$$$: $$$\frac{2419}{41} = {\color{red}59}$$$.
Die Primzahl $$${\color{green}59}$$$ hat keine anderen Teiler als $$$1$$$ und $$${\color{green}59}$$$: $$$\frac{59}{59} = {\color{red}1}$$$.
Da wir $$$1$$$ erhalten haben, sind wir fertig.
Zähle nun einfach die Anzahl der Vorkommen der Teiler (grüne Zahlen) und schreibe die Primfaktorzerlegung auf: $$$4838 = 2 \cdot 41 \cdot 59$$$.
Antwort
Die Primfaktorzerlegung ist $$$4838 = 2 \cdot 41 \cdot 59$$$A.