Primfaktorzerlegung von $$$4041$$$
Ihre Eingabe
Bestimme die Primfaktorzerlegung von $$$4041$$$.
Lösung
Beginnen Sie mit der Zahl $$$2$$$.
Bestimmen Sie, ob $$$4041$$$ divisible durch $$$2$$$ ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$3$$$.
Bestimmen Sie, ob $$$4041$$$ durch $$$3$$$ teilbar ist.
Es ist teilbar, daher teile $$$4041$$$ durch $$${\color{green}3}$$$: $$$\frac{4041}{3} = {\color{red}1347}$$$.
Bestimmen Sie, ob $$$1347$$$ durch $$$3$$$ teilbar ist.
Es ist teilbar, daher teile $$$1347$$$ durch $$${\color{green}3}$$$: $$$\frac{1347}{3} = {\color{red}449}$$$.
Die Primzahl $$${\color{green}449}$$$ hat keine anderen Teiler als $$$1$$$ und $$${\color{green}449}$$$: $$$\frac{449}{449} = {\color{red}1}$$$.
Da wir $$$1$$$ erhalten haben, sind wir fertig.
Zähle nun einfach die Anzahl der Vorkommen der Teiler (grüne Zahlen) und schreibe die Primfaktorzerlegung auf: $$$4041 = 3^{2} \cdot 449$$$.
Antwort
Die Primfaktorzerlegung ist $$$4041 = 3^{2} \cdot 449$$$A.