Primfaktorzerlegung von $$$2627$$$
Ihre Eingabe
Bestimme die Primfaktorzerlegung von $$$2627$$$.
Lösung
Beginnen Sie mit der Zahl $$$2$$$.
Bestimmen Sie, ob $$$2627$$$ divisible durch $$$2$$$ ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$3$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$3$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$5$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$5$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$7$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$7$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$11$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$11$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$13$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$13$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$17$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$17$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$19$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$19$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$23$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$23$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$29$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$29$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$31$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$31$$$ teilbar ist.
Da es nicht teilbar ist, fahre mit der nächsten Primzahl fort.
Die nächste Primzahl ist $$$37$$$.
Bestimmen Sie, ob $$$2627$$$ durch $$$37$$$ teilbar ist.
Es ist teilbar, daher teile $$$2627$$$ durch $$${\color{green}37}$$$: $$$\frac{2627}{37} = {\color{red}71}$$$.
Die Primzahl $$${\color{green}71}$$$ hat keine anderen Teiler als $$$1$$$ und $$${\color{green}71}$$$: $$$\frac{71}{71} = {\color{red}1}$$$.
Da wir $$$1$$$ erhalten haben, sind wir fertig.
Zähle nun einfach die Anzahl der Vorkommen der Teiler (grüne Zahlen) und schreibe die Primfaktorzerlegung auf: $$$2627 = 37 \cdot 71$$$.
Antwort
Die Primfaktorzerlegung ist $$$2627 = 37 \cdot 71$$$A.