Bruch-zu-Dezimalzahl-Rechner
Brüche Schritt für Schritt in Dezimalzahlen umwandeln
Der Rechner wandelt den gegebenen Bruch (echt oder unecht) oder die gemischte Zahl in eine Dezimalzahl um (möglicherweise periodisch/repetierend) und zeigt die Rechenschritte an.
Solution
Your input: convert $$$\frac{4900}{60}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{8}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\60&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}4&9&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$60$$$'s are in $$$4$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$4-60 \cdot 0 = 4 - 0= 4$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{8}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Chartreuse}{4}& 9 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&9&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$60$$$'s are in $$$49$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$49-60 \cdot 0 = 49 - 0= 49$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{Green}{0}&\phantom{8}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&9& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Green}{4}&\color{Green}{9}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&9&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$60$$$'s are in $$$490$$$?
The answer is $$$8$$$.
Write down $$$8$$$ in the upper part of the table.
Now, $$$490-60 \cdot 8 = 490 - 480= 10$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{Purple}{8}&\phantom{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&9&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Purple}{4}&\color{Purple}{9}&\color{Purple}{0}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$60$$$'s are in $$$100$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$100-60 \cdot 1 = 100 - 60= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&\color{Violet}{1}&\phantom{.}&\phantom{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&9&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&\color{Violet}{1}&\color{Violet}{0}&\color{Violet}{0}&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&0&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$60$$$'s are in $$$400$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$400-60 \cdot 6 = 400 - 360= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&1&.&\color{Brown}{6}&\phantom{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&9&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&0&\phantom{.}\\\hline\phantom{lll}&&\color{Brown}{4}&\color{Brown}{0}&\phantom{.}&\color{Brown}{0}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&6&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$60$$$'s are in $$$400$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$400-60 \cdot 6 = 400 - 360= 40$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&1&.&6&\color{Blue}{6}&\phantom{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&9&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&0&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&6&\phantom{.}&0\\\hline\phantom{lll}&&&\color{Blue}{4}&\phantom{.}&\color{Blue}{0}&\color{Blue}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&3&\phantom{.}&6&0\\\hline\phantom{lll}&&&&&4&0&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$60$$$'s are in $$$400$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$400-60 \cdot 6 = 400 - 360= 40$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&8&1&.&6&6&\color{Peru}{6}\end{array}&\\\color{Magenta}{60}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}4&9&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}4&9&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}4&9&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}4&8&0&\phantom{.}\\\hline\phantom{lll}&1&0&0&\phantom{.}\\-&\phantom{9}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&6&0&\phantom{.}\\\hline\phantom{lll}&&4&0&\phantom{.}&0\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&3&6&\phantom{.}&0\\\hline\phantom{lll}&&&4&\phantom{.}&0&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&3&\phantom{.}&6&0\\\hline\phantom{lll}&&&&&\color{Peru}{4}&\color{Peru}{0}&\color{Peru}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&3&6&0\\\hline\phantom{lll}&&&&&&4&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{4900}{60}=81.6 \overline{6}$$$
Answer: $$$\frac{4900}{60}=81.6\overline{6}$$$