Bruch-zu-Dezimalzahl-Rechner
Brüche Schritt für Schritt in Dezimalzahlen umwandeln
Der Rechner wandelt den gegebenen Bruch (echt oder unecht) oder die gemischte Zahl in eine Dezimalzahl um (möglicherweise periodisch/repetierend) und zeigt die Rechenschritte an.
Solution
Your input: convert $$$\frac{1100}{18}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccc}\phantom{6}&\phantom{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\18&\phantom{-}\enclose{longdiv}{\begin{array}{cccc}1&1&0&0\end{array}}&\\&\begin{array}{llll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$18$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-18 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}\color{Chartreuse}{0}&\phantom{0}&\phantom{6}&\phantom{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}\color{Chartreuse}{1}& 1 \downarrow&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$18$$$'s are in $$$11$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$11-18 \cdot 0 = 11 - 0= 11$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&\color{Crimson}{0}&\phantom{6}&\phantom{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1& 0 \downarrow&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{Crimson}{1}&\color{Crimson}{1}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$18$$$'s are in $$$110$$$?
The answer is $$$6$$$.
Write down $$$6$$$ in the upper part of the table.
Now, $$$110-18 \cdot 6 = 110 - 108= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&\color{GoldenRod}{6}&\phantom{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0& 0 \downarrow&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{GoldenRod}{1}&\color{GoldenRod}{1}&\color{GoldenRod}{0}&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$18$$$'s are in $$$20$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$20-18 \cdot 1 = 20 - 18= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&\color{Purple}{1}&\phantom{.}&\phantom{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.& 0 \downarrow&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&\color{Purple}{2}&\color{Purple}{0}&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}\\\hline\phantom{lll}&&&2&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$18$$$'s are in $$$20$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$20-18 \cdot 1 = 20 - 18= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&1&.&\color{DarkBlue}{1}&\phantom{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.&0& 0 \downarrow&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}\\\hline\phantom{lll}&&&\color{DarkBlue}{2}&\phantom{.}&\color{DarkBlue}{0}\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8\\\hline\phantom{lll}&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$18$$$'s are in $$$20$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$20-18 \cdot 1 = 20 - 18= 2$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&1&.&1&\color{Chocolate}{1}&\phantom{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.&0&0& 0 \downarrow\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}\\\hline\phantom{lll}&&&2&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8\\\hline\phantom{lll}&&&&&\color{Chocolate}{2}&\color{Chocolate}{0}\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&8\\\hline\phantom{lll}&&&&&&2&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 7
How many $$$18$$$'s are in $$$20$$$?
The answer is $$$1$$$.
Write down $$$1$$$ in the upper part of the table.
Now, $$$20-18 \cdot 1 = 20 - 18= 2$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{cccccccc}0&0&6&1&.&1&1&\color{DeepPink}{1}\end{array}&\\\color{Magenta}{18}&\phantom{-}\enclose{longdiv}{\begin{array}{cccccccc}1&1&0&0&.&0&0&0\end{array}}&\\&\begin{array}{lllllll}-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&1&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&1&0&\phantom{.}\\-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}\\\phantom{lll}1&0&8&\phantom{.}\\\hline\phantom{lll}&&2&0&\phantom{.}\\&-&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&1&8&\phantom{.}\\\hline\phantom{lll}&&&2&\phantom{.}&0\\&&-&\phantom{0}&\phantom{.}&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&1&\phantom{.}&8\\\hline\phantom{lll}&&&&&2&0\\&&&&-&\phantom{0}&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&1&8\\\hline\phantom{lll}&&&&&&\color{DeepPink}{2}&\color{DeepPink}{0}\\&&&&&-&\phantom{0}&\phantom{0}\\\phantom{lll}&&&&&&1&8\\\hline\phantom{lll}&&&&&&&2\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{1100}{18}=61.1 \overline{1}$$$
Answer: $$$\frac{1100}{18}=61.1\overline{1}$$$