Bruch-zu-Dezimalzahl-Rechner
Brüche Schritt für Schritt in Dezimalzahlen umwandeln
Der Rechner wandelt den gegebenen Bruch (echt oder unecht) oder die gemischte Zahl in eine Dezimalzahl um (möglicherweise periodisch/repetierend) und zeigt die Rechenschritte an.
Solution
Your input: convert $$$\frac{14100}{150}$$$ into a decimal.
Write the problem in the special format:
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccc}\phantom{9}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\150&\phantom{-}\enclose{longdiv}{\begin{array}{ccccc}1&4&1&0&0\end{array}}&\\&\begin{array}{lllll}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 1
How many $$$150$$$'s are in $$$1$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$1-150 \cdot 0 = 1 - 0= 1$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}\color{GoldenRod}{0}&\phantom{0}&\phantom{0}&\phantom{9}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}\color{GoldenRod}{1}& 4 \downarrow&1&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&4&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 2
How many $$$150$$$'s are in $$$14$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$14-150 \cdot 0 = 14 - 0= 14$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&\color{OrangeRed}{0}&\phantom{0}&\phantom{9}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&4& 1 \downarrow&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}\color{OrangeRed}{1}&\color{OrangeRed}{4}&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&4&1&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 3
How many $$$150$$$'s are in $$$141$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$141-150 \cdot 0 = 141 - 0= 141$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&\color{Violet}{0}&\phantom{9}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&4&1& 0 \downarrow&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&4&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}\color{Violet}{1}&\color{Violet}{4}&\color{Violet}{1}&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&4&1&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 4
How many $$$150$$$'s are in $$$1410$$$?
The answer is $$$9$$$.
Write down $$$9$$$ in the upper part of the table.
Now, $$$1410-150 \cdot 9 = 1410 - 1350= 60$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&\color{Fuchsia}{9}&\phantom{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&4&1&0& 0 \downarrow&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&4&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&4&1&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}\color{Fuchsia}{1}&\color{Fuchsia}{4}&\color{Fuchsia}{1}&\color{Fuchsia}{0}&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&3&5&0&\phantom{.}\\\hline\phantom{lll}&&6&0&0&\phantom{.}\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 5
How many $$$150$$$'s are in $$$600$$$?
The answer is $$$4$$$.
Write down $$$4$$$ in the upper part of the table.
Now, $$$600-150 \cdot 4 = 600 - 600= 0$$$.
Bring down the next digit of the dividend.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&9&\color{Crimson}{4}&\phantom{.}&\phantom{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&4&1&0&0&.& 0 \downarrow\end{array}}&\\&\begin{array}{llllll}-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&4&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&4&1&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&4&1&0&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&3&5&0&\phantom{.}\\\hline\phantom{lll}&&\color{Crimson}{6}&\color{Crimson}{0}&\color{Crimson}{0}&\phantom{.}\\&-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&6&0&0&\phantom{.}\\\hline\phantom{lll}&&&&0&\phantom{.}&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
Step 6
How many $$$150$$$'s are in $$$0$$$?
The answer is $$$0$$$.
Write down $$$0$$$ in the upper part of the table.
Now, $$$0-150 \cdot 0 = 0 - 0= 0$$$.
$$$\require{enclose}\begin{array}{rlc}&\phantom{-\enclose{longdiv}{}}\begin{array}{ccccccc}0&0&0&9&4&.&\color{Chocolate}{0}\end{array}&\\\color{Magenta}{150}&\phantom{-}\enclose{longdiv}{\begin{array}{ccccccc}1&4&1&0&0&.&0\end{array}}&\\&\begin{array}{llllll}-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}0&\phantom{.}\\\hline\phantom{lll}1&4&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&0&\phantom{.}\\\hline\phantom{lll}1&4&1&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}&&0&\phantom{.}\\\hline\phantom{lll}1&4&1&0&\phantom{.}\\-&\phantom{4}&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{0}&\phantom{.}\\\phantom{lll}1&3&5&0&\phantom{.}\\\hline\phantom{lll}&&6&0&0&\phantom{.}\\&-&\phantom{1}&\phantom{0}&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&6&0&0&\phantom{.}\\\hline\phantom{lll}&&&&\color{Chocolate}{0}&\phantom{.}&\color{Chocolate}{0}\\&&&-&\phantom{0}&\phantom{.}&\phantom{0}\\\phantom{lll}&&&&&\phantom{.}&0\\\hline\phantom{lll}&&&&&&0\end{array}&\begin{array}{c}\end{array}\end{array}$$$
As can be seen, the digits are repeating with some period, therefore it is a repeating (or recurring) decimal: $$$\frac{14100}{150}=94.0 \overline{}$$$
Answer: $$$\frac{14100}{150}=94.0\overline{}$$$