Rechner für partielle Ableitungen
Partielle Ableitungen Schritt für Schritt berechnen
Dieser Online-Rechner berechnet die partielle Ableitung der Funktion und zeigt die Rechenschritte an. Sie können jede Ableitungsordnung angeben.
Solution
Your input: find $$$\frac{\partial}{\partial x}\left(x^{2} - y^{2}\right)$$$
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}{\frac{\partial}{\partial x}\left(x^{2} - y^{2}\right)}}={\color{red}{\left(\frac{\partial}{\partial x}\left(x^{2}\right) - \frac{\partial}{\partial x}\left(y^{2}\right)\right)}}$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=2$$$:
$${\color{red}{\frac{\partial}{\partial x}\left(x^{2}\right)}} - \frac{\partial}{\partial x}\left(y^{2}\right)={\color{red}{\left(2 x^{-1 + 2}\right)}} - \frac{\partial}{\partial x}\left(y^{2}\right)=2 x - \frac{\partial}{\partial x}\left(y^{2}\right)$$The derivative of a constant is 0:
$$2 x - {\color{red}{\frac{\partial}{\partial x}\left(y^{2}\right)}}=2 x - {\color{red}{\left(0\right)}}$$Thus, $$$\frac{\partial}{\partial x}\left(x^{2} - y^{2}\right)=2 x$$$
Answer: $$$\frac{\partial}{\partial x}\left(x^{2} - y^{2}\right)=2 x$$$
Please try a new game Rotatly